Kavita/API/Extensions/ImageExtensions.cs

438 lines
15 KiB
C#

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using SixLabors.ImageSharp.Processing;
using Image = SixLabors.ImageSharp.Image;
namespace API.Extensions;
public static class ImageExtensions
{
/// <summary>
/// Structure to hold various image quality metrics
/// </summary>
private sealed class ImageQualityMetrics
{
public int Width { get; set; }
public int Height { get; set; }
public bool IsColor { get; set; }
public double Colorfulness { get; set; }
public double Contrast { get; set; }
public double Sharpness { get; set; }
public double NoiseLevel { get; set; }
}
/// <summary>
/// Calculate a similarity score (0-1f) based on resolution difference and MSE.
/// </summary>
/// <param name="imagePath1">Path to first image</param>
/// <param name="imagePath2">Path to the second image</param>
/// <returns>Similarity score between 0-1, where 1 is identical</returns>
public static float CalculateSimilarity(this string imagePath1, string imagePath2)
{
if (!File.Exists(imagePath1) || !File.Exists(imagePath2))
{
throw new FileNotFoundException("One or both image files do not exist");
}
// Load both images as Rgba32 (consistent with the rest of the code)
using var img1 = Image.Load<Rgba32>(imagePath1);
using var img2 = Image.Load<Rgba32>(imagePath2);
// Calculate resolution difference factor
var res1 = img1.Width * img1.Height;
var res2 = img2.Width * img2.Height;
var resolutionDiff = Math.Abs(res1 - res2) / (float) Math.Max(res1, res2);
// Calculate mean squared error for pixel differences
var mse = img1.GetMeanSquaredError(img2);
// Normalize MSE (65025 = 255², which is the max possible squared difference per channel)
var normalizedMse = 1f - Math.Min(1f, mse / 65025f);
// Final similarity score (weighted average of resolution difference and color difference)
return Math.Max(0f, 1f - (resolutionDiff * 0.5f) - (1f - normalizedMse) * 0.5f);
}
/// <summary>
/// Smaller is better
/// </summary>
/// <param name="img1"></param>
/// <param name="img2"></param>
/// <returns></returns>
public static float GetMeanSquaredError(this Image<Rgba32> img1, Image<Rgba32> img2)
{
if (img1.Width != img2.Width || img1.Height != img2.Height)
{
img2.Mutate(x => x.Resize(img1.Width, img1.Height));
}
double totalDiff = 0;
for (var y = 0; y < img1.Height; y++)
{
for (var x = 0; x < img1.Width; x++)
{
var pixel1 = img1[x, y];
var pixel2 = img2[x, y];
var diff = Math.Pow(pixel1.R - pixel2.R, 2) +
Math.Pow(pixel1.G - pixel2.G, 2) +
Math.Pow(pixel1.B - pixel2.B, 2);
totalDiff += diff;
}
}
return (float) (totalDiff / (img1.Width * img1.Height));
}
/// <summary>
/// Determines which image is "better" based on multiple quality factors
/// using only the cross-platform ImageSharp library
/// </summary>
/// <param name="imagePath1">Path to first image</param>
/// <param name="imagePath2">Path to the second image</param>
/// <param name="preferColor">Whether to prefer color images over grayscale (default: true)</param>
/// <returns>The path of the better image</returns>
public static string GetBetterImage(this string imagePath1, string imagePath2, bool preferColor = true)
{
if (!File.Exists(imagePath1) || !File.Exists(imagePath2))
{
throw new FileNotFoundException("One or both image files do not exist");
}
// Quick metadata check to get width/height without loading full pixel data
var info1 = Image.Identify(imagePath1);
var info2 = Image.Identify(imagePath2);
// Calculate resolution factor
double resolutionFactor1 = info1.Width * info1.Height;
double resolutionFactor2 = info2.Width * info2.Height;
// If one image is significantly higher resolution (3x or more), just pick it
// This avoids fully loading both images when the choice is obvious
if (resolutionFactor1 > resolutionFactor2 * 3)
return imagePath1;
if (resolutionFactor2 > resolutionFactor1 * 3)
return imagePath2;
// Otherwise, we need to analyze the actual image data for both
// NOTE: We HAVE to use these scope blocks and load image here otherwise memory-mapped section exception will occur
ImageQualityMetrics metrics1;
using (var img1 = Image.Load<Rgba32>(imagePath1))
{
metrics1 = GetImageQualityMetrics(img1);
}
ImageQualityMetrics metrics2;
using (var img2 = Image.Load<Rgba32>(imagePath2))
{
metrics2 = GetImageQualityMetrics(img2);
}
// If one is color, and one is grayscale, then we prefer color
if (preferColor && metrics1.IsColor != metrics2.IsColor)
{
return metrics1.IsColor ? imagePath1 : imagePath2;
}
// Calculate overall quality scores
var score1 = CalculateOverallScore(metrics1);
var score2 = CalculateOverallScore(metrics2);
return score1 >= score2 ? imagePath1 : imagePath2;
}
/// <summary>
/// Calculate a weighted overall score based on metrics
/// </summary>
private static double CalculateOverallScore(ImageQualityMetrics metrics)
{
// Resolution factor (normalized to HD resolution)
var resolutionFactor = Math.Min(1.0, (metrics.Width * metrics.Height) / (double) (1920 * 1080));
// Color factor
var colorFactor = metrics.IsColor ? (0.5 + 0.5 * metrics.Colorfulness) : 0.3;
// Quality factors
var contrastFactor = Math.Min(1.0, metrics.Contrast);
var sharpnessFactor = Math.Min(1.0, metrics.Sharpness);
// Noise penalty (less noise is better)
var noisePenalty = Math.Max(0, 1.0 - metrics.NoiseLevel);
// Weighted combination
return (resolutionFactor * 0.35) +
(colorFactor * 0.3) +
(contrastFactor * 0.15) +
(sharpnessFactor * 0.15) +
(noisePenalty * 0.05);
}
/// <summary>
/// Gets quality metrics for an image
/// </summary>
private static ImageQualityMetrics GetImageQualityMetrics(Image<Rgba32> image)
{
// Create a smaller version if the image is large to speed up analysis
Image<Rgba32> workingImage;
if (image.Width > 512 || image.Height > 512)
{
workingImage = image.Clone(ctx => ctx.Resize(
new ResizeOptions {
Size = new Size(512),
Mode = ResizeMode.Max
}));
}
else
{
workingImage = image.Clone();
}
var metrics = new ImageQualityMetrics
{
Width = image.Width,
Height = image.Height
};
// Color analysis (is the image color or grayscale?)
var colorInfo = AnalyzeColorfulness(workingImage);
metrics.IsColor = colorInfo.IsColor;
metrics.Colorfulness = colorInfo.Colorfulness;
// Contrast analysis
metrics.Contrast = CalculateContrast(workingImage);
// Sharpness estimation
metrics.Sharpness = EstimateSharpness(workingImage);
// Noise estimation
metrics.NoiseLevel = EstimateNoiseLevel(workingImage);
// Clean up
workingImage.Dispose();
return metrics;
}
/// <summary>
/// Analyzes colorfulness of an image
/// </summary>
private static (bool IsColor, double Colorfulness) AnalyzeColorfulness(Image<Rgba32> image)
{
// For performance, sample a subset of pixels
var sampleSize = Math.Min(1000, image.Width * image.Height);
var stepSize = Math.Max(1, (image.Width * image.Height) / sampleSize);
var colorCount = 0;
List<(int R, int G, int B)> samples = [];
// Sample pixels
for (var i = 0; i < image.Width * image.Height; i += stepSize)
{
var x = i % image.Width;
var y = i / image.Width;
var pixel = image[x, y];
// Check if RGB channels differ by a threshold
// High difference indicates color, low difference indicates grayscale
var rMinusG = Math.Abs(pixel.R - pixel.G);
var rMinusB = Math.Abs(pixel.R - pixel.B);
var gMinusB = Math.Abs(pixel.G - pixel.B);
if (rMinusG > 15 || rMinusB > 15 || gMinusB > 15)
{
colorCount++;
}
samples.Add((pixel.R, pixel.G, pixel.B));
}
// Calculate colorfulness metric based on Hasler and Süsstrunk's approach
// This measures the spread and intensity of colors
if (samples.Count <= 0) return (false, 0);
// Calculate rg and yb opponent channels
var rg = samples.Select(p => p.R - p.G).ToList();
var yb = samples.Select(p => 0.5 * (p.R + p.G) - p.B).ToList();
// Calculate standard deviation and mean of opponent channels
var rgStdDev = CalculateStdDev(rg);
var ybStdDev = CalculateStdDev(yb);
var rgMean = rg.Average();
var ybMean = yb.Average();
// Combine into colorfulness metric
var stdRoot = Math.Sqrt(rgStdDev * rgStdDev + ybStdDev * ybStdDev);
var meanRoot = Math.Sqrt(rgMean * rgMean + ybMean * ybMean);
var colorfulness = stdRoot + 0.3 * meanRoot;
// Normalize to 0-1 range (typical colorfulness is 0-100)
colorfulness = Math.Min(1.0, colorfulness / 100.0);
var isColor = (double)colorCount / samples.Count > 0.05;
return (isColor, colorfulness);
}
/// <summary>
/// Calculate standard deviation of a list of values
/// </summary>
private static double CalculateStdDev(List<int> values)
{
var mean = values.Average();
var sumOfSquaresOfDifferences = values.Select(val => (val - mean) * (val - mean)).Sum();
return Math.Sqrt(sumOfSquaresOfDifferences / values.Count);
}
/// <summary>
/// Calculate standard deviation of a list of values
/// </summary>
private static double CalculateStdDev(List<double> values)
{
var mean = values.Average();
var sumOfSquaresOfDifferences = values.Select(val => (val - mean) * (val - mean)).Sum();
return Math.Sqrt(sumOfSquaresOfDifferences / values.Count);
}
/// <summary>
/// Calculates contrast of an image
/// </summary>
private static double CalculateContrast(Image<Rgba32> image)
{
// For performance, sample a subset of pixels
var sampleSize = Math.Min(1000, image.Width * image.Height);
var stepSize = Math.Max(1, (image.Width * image.Height) / sampleSize);
List<int> luminanceValues = new();
// Sample pixels and calculate luminance
for (var i = 0; i < image.Width * image.Height; i += stepSize)
{
var x = i % image.Width;
var y = i / image.Width;
var pixel = image[x, y];
// Calculate luminance
var luminance = (int)(0.299 * pixel.R + 0.587 * pixel.G + 0.114 * pixel.B);
luminanceValues.Add(luminance);
}
if (luminanceValues.Count < 2)
return 0;
// Use RMS contrast (root-mean-square of pixel intensity)
var mean = luminanceValues.Average();
var sumOfSquaresOfDifferences = luminanceValues.Sum(l => Math.Pow(l - mean, 2));
var rmsContrast = Math.Sqrt(sumOfSquaresOfDifferences / luminanceValues.Count) / mean;
// Normalize to 0-1 range
return Math.Min(1.0, rmsContrast);
}
/// <summary>
/// Estimates sharpness using simple Laplacian-based method
/// </summary>
private static double EstimateSharpness(Image<Rgba32> image)
{
// For simplicity, convert to grayscale
var grayImage = new int[image.Width, image.Height];
// Convert to grayscale
for (var y = 0; y < image.Height; y++)
{
for (var x = 0; x < image.Width; x++)
{
var pixel = image[x, y];
grayImage[x, y] = (int)(0.299 * pixel.R + 0.587 * pixel.G + 0.114 * pixel.B);
}
}
// Apply Laplacian filter (3x3)
// The Laplacian measures local variations - higher values indicate edges/details
double laplacianSum = 0;
var validPixels = 0;
// Laplacian kernel: [0, 1, 0, 1, -4, 1, 0, 1, 0]
for (var y = 1; y < image.Height - 1; y++)
{
for (var x = 1; x < image.Width - 1; x++)
{
var laplacian =
grayImage[x, y - 1] +
grayImage[x - 1, y] - 4 * grayImage[x, y] + grayImage[x + 1, y] +
grayImage[x, y + 1];
laplacianSum += Math.Abs(laplacian);
validPixels++;
}
}
if (validPixels == 0)
return 0;
// Calculate variance of Laplacian
var laplacianVariance = laplacianSum / validPixels;
// Normalize to 0-1 range (typical values range from 0-1000)
return Math.Min(1.0, laplacianVariance / 1000.0);
}
/// <summary>
/// Estimates noise level using simple block-based variance method
/// </summary>
private static double EstimateNoiseLevel(Image<Rgba32> image)
{
// Block size for noise estimation
const int blockSize = 8;
List<double> blockVariances = new();
// Calculate variance in small blocks throughout the image
for (var y = 0; y < image.Height - blockSize; y += blockSize)
{
for (var x = 0; x < image.Width - blockSize; x += blockSize)
{
List<int> blockValues = new();
// Sample block
for (var by = 0; by < blockSize; by++)
{
for (var bx = 0; bx < blockSize; bx++)
{
var pixel = image[x + bx, y + by];
var value = (int)(0.299 * pixel.R + 0.587 * pixel.G + 0.114 * pixel.B);
blockValues.Add(value);
}
}
// Calculate variance of this block
var blockMean = blockValues.Average();
var blockVariance = blockValues.Sum(v => Math.Pow(v - blockMean, 2)) / blockValues.Count;
blockVariances.Add(blockVariance);
}
}
if (blockVariances.Count == 0)
return 0;
// Sort block variances and take lowest 10% (likely uniform areas where noise is most visible)
blockVariances.Sort();
var smoothBlocksCount = Math.Max(1, blockVariances.Count / 10);
var averageNoiseVariance = blockVariances.Take(smoothBlocksCount).Average();
// Normalize to 0-1 range (typical noise variances are 0-100)
return Math.Min(1.0, averageNoiseVariance / 100.0);
}
}