mirror of
				https://github.com/caddyserver/caddy.git
				synced 2025-11-03 19:17:29 -05:00 
			
		
		
		
	The vendor/ folder was created with the help of @FiloSottile's gvt and vendorcheck. Any dependencies of Caddy plugins outside this repo are not vendored. We do not remove any unused, vendored packages because vendorcheck -u only checks using the current build configuration; i.e. packages that may be imported by files toggled by build tags of other systems. CI tests have been updated to ignore the vendor/ folder. When Go 1.9 is released, a few of the go commands should be revised to again use ./... as it will ignore the vendor folder by default.
		
			
				
	
	
		
			402 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			402 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2013 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package aes12
 | 
						|
 | 
						|
import (
 | 
						|
	"crypto/subtle"
 | 
						|
	"errors"
 | 
						|
)
 | 
						|
 | 
						|
// AEAD is a cipher mode providing authenticated encryption with associated
 | 
						|
// data. For a description of the methodology, see
 | 
						|
//	https://en.wikipedia.org/wiki/Authenticated_encryption
 | 
						|
type AEAD interface {
 | 
						|
	// NonceSize returns the size of the nonce that must be passed to Seal
 | 
						|
	// and Open.
 | 
						|
	NonceSize() int
 | 
						|
 | 
						|
	// Overhead returns the maximum difference between the lengths of a
 | 
						|
	// plaintext and its ciphertext.
 | 
						|
	Overhead() int
 | 
						|
 | 
						|
	// Seal encrypts and authenticates plaintext, authenticates the
 | 
						|
	// additional data and appends the result to dst, returning the updated
 | 
						|
	// slice. The nonce must be NonceSize() bytes long and unique for all
 | 
						|
	// time, for a given key.
 | 
						|
	//
 | 
						|
	// The plaintext and dst may alias exactly or not at all. To reuse
 | 
						|
	// plaintext's storage for the encrypted output, use plaintext[:0] as dst.
 | 
						|
	Seal(dst, nonce, plaintext, additionalData []byte) []byte
 | 
						|
 | 
						|
	// Open decrypts and authenticates ciphertext, authenticates the
 | 
						|
	// additional data and, if successful, appends the resulting plaintext
 | 
						|
	// to dst, returning the updated slice. The nonce must be NonceSize()
 | 
						|
	// bytes long and both it and the additional data must match the
 | 
						|
	// value passed to Seal.
 | 
						|
	//
 | 
						|
	// The ciphertext and dst may alias exactly or not at all. To reuse
 | 
						|
	// ciphertext's storage for the decrypted output, use ciphertext[:0] as dst.
 | 
						|
	//
 | 
						|
	// Even if the function fails, the contents of dst, up to its capacity,
 | 
						|
	// may be overwritten.
 | 
						|
	Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error)
 | 
						|
}
 | 
						|
 | 
						|
// gcmAble is an interface implemented by ciphers that have a specific optimized
 | 
						|
// implementation of GCM, like crypto/aes. NewGCM will check for this interface
 | 
						|
// and return the specific AEAD if found.
 | 
						|
type gcmAble interface {
 | 
						|
	NewGCM(int) (AEAD, error)
 | 
						|
}
 | 
						|
 | 
						|
// gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
 | 
						|
// standard and make getUint64 suitable for marshaling these values, the bits
 | 
						|
// are stored backwards. For example:
 | 
						|
//   the coefficient of x⁰ can be obtained by v.low >> 63.
 | 
						|
//   the coefficient of x⁶³ can be obtained by v.low & 1.
 | 
						|
//   the coefficient of x⁶⁴ can be obtained by v.high >> 63.
 | 
						|
//   the coefficient of x¹²⁷ can be obtained by v.high & 1.
 | 
						|
type gcmFieldElement struct {
 | 
						|
	low, high uint64
 | 
						|
}
 | 
						|
 | 
						|
// gcm represents a Galois Counter Mode with a specific key. See
 | 
						|
// http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
 | 
						|
type gcm struct {
 | 
						|
	cipher    Block
 | 
						|
	nonceSize int
 | 
						|
	// productTable contains the first sixteen powers of the key, H.
 | 
						|
	// However, they are in bit reversed order. See NewGCMWithNonceSize.
 | 
						|
	productTable [16]gcmFieldElement
 | 
						|
}
 | 
						|
 | 
						|
// NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode
 | 
						|
// with the standard nonce length.
 | 
						|
func NewGCM(cipher Block) (AEAD, error) {
 | 
						|
	return NewGCMWithNonceSize(cipher, gcmStandardNonceSize)
 | 
						|
}
 | 
						|
 | 
						|
// NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois
 | 
						|
// Counter Mode, which accepts nonces of the given length.
 | 
						|
//
 | 
						|
// Only use this function if you require compatibility with an existing
 | 
						|
// cryptosystem that uses non-standard nonce lengths. All other users should use
 | 
						|
// NewGCM, which is faster and more resistant to misuse.
 | 
						|
func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) {
 | 
						|
	if cipher, ok := cipher.(gcmAble); ok {
 | 
						|
		return cipher.NewGCM(size)
 | 
						|
	}
 | 
						|
 | 
						|
	if cipher.BlockSize() != gcmBlockSize {
 | 
						|
		return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
 | 
						|
	}
 | 
						|
 | 
						|
	var key [gcmBlockSize]byte
 | 
						|
	cipher.Encrypt(key[:], key[:])
 | 
						|
 | 
						|
	g := &gcm{cipher: cipher, nonceSize: size}
 | 
						|
 | 
						|
	// We precompute 16 multiples of |key|. However, when we do lookups
 | 
						|
	// into this table we'll be using bits from a field element and
 | 
						|
	// therefore the bits will be in the reverse order. So normally one
 | 
						|
	// would expect, say, 4*key to be in index 4 of the table but due to
 | 
						|
	// this bit ordering it will actually be in index 0010 (base 2) = 2.
 | 
						|
	x := gcmFieldElement{
 | 
						|
		getUint64(key[:8]),
 | 
						|
		getUint64(key[8:]),
 | 
						|
	}
 | 
						|
	g.productTable[reverseBits(1)] = x
 | 
						|
 | 
						|
	for i := 2; i < 16; i += 2 {
 | 
						|
		g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
 | 
						|
		g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
 | 
						|
	}
 | 
						|
 | 
						|
	return g, nil
 | 
						|
}
 | 
						|
 | 
						|
const (
 | 
						|
	gcmBlockSize         = 16
 | 
						|
	gcmTagSize           = 12
 | 
						|
	gcmStandardNonceSize = 12
 | 
						|
)
 | 
						|
 | 
						|
func (g *gcm) NonceSize() int {
 | 
						|
	return g.nonceSize
 | 
						|
}
 | 
						|
 | 
						|
func (*gcm) Overhead() int {
 | 
						|
	return gcmTagSize
 | 
						|
}
 | 
						|
 | 
						|
func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
 | 
						|
	if len(nonce) != g.nonceSize {
 | 
						|
		panic("cipher: incorrect nonce length given to GCM")
 | 
						|
	}
 | 
						|
	ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize)
 | 
						|
 | 
						|
	var counter, tagMask [gcmBlockSize]byte
 | 
						|
	g.deriveCounter(&counter, nonce)
 | 
						|
 | 
						|
	g.cipher.Encrypt(tagMask[:], counter[:])
 | 
						|
	gcmInc32(&counter)
 | 
						|
 | 
						|
	g.counterCrypt(out, plaintext, &counter)
 | 
						|
 | 
						|
	tag := make([]byte, 16)
 | 
						|
	g.auth(tag, out[:len(plaintext)], data, &tagMask)
 | 
						|
	copy(ret[len(ret)-12:], tag)
 | 
						|
 | 
						|
	return ret
 | 
						|
}
 | 
						|
 | 
						|
var errOpen = errors.New("cipher: message authentication failed")
 | 
						|
 | 
						|
func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
 | 
						|
	if len(nonce) != g.nonceSize {
 | 
						|
		panic("cipher: incorrect nonce length given to GCM")
 | 
						|
	}
 | 
						|
 | 
						|
	if len(ciphertext) < gcmTagSize {
 | 
						|
		return nil, errOpen
 | 
						|
	}
 | 
						|
	tag := ciphertext[len(ciphertext)-gcmTagSize:]
 | 
						|
	ciphertext = ciphertext[:len(ciphertext)-gcmTagSize]
 | 
						|
 | 
						|
	var counter, tagMask [gcmBlockSize]byte
 | 
						|
	g.deriveCounter(&counter, nonce)
 | 
						|
 | 
						|
	g.cipher.Encrypt(tagMask[:], counter[:])
 | 
						|
	gcmInc32(&counter)
 | 
						|
 | 
						|
	var expectedTag [gcmBlockSize]byte
 | 
						|
	g.auth(expectedTag[:], ciphertext, data, &tagMask)
 | 
						|
 | 
						|
	ret, out := sliceForAppend(dst, len(ciphertext))
 | 
						|
 | 
						|
	if subtle.ConstantTimeCompare(expectedTag[:gcmTagSize], tag) != 1 {
 | 
						|
		// The AESNI code decrypts and authenticates concurrently, and
 | 
						|
		// so overwrites dst in the event of a tag mismatch. That
 | 
						|
		// behaviour is mimicked here in order to be consistent across
 | 
						|
		// platforms.
 | 
						|
		for i := range out {
 | 
						|
			out[i] = 0
 | 
						|
		}
 | 
						|
		return nil, errOpen
 | 
						|
	}
 | 
						|
 | 
						|
	g.counterCrypt(out, ciphertext, &counter)
 | 
						|
 | 
						|
	return ret, nil
 | 
						|
}
 | 
						|
 | 
						|
// reverseBits reverses the order of the bits of 4-bit number in i.
 | 
						|
func reverseBits(i int) int {
 | 
						|
	i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
 | 
						|
	i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
 | 
						|
	return i
 | 
						|
}
 | 
						|
 | 
						|
// gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
 | 
						|
func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
 | 
						|
	// Addition in a characteristic 2 field is just XOR.
 | 
						|
	return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
 | 
						|
}
 | 
						|
 | 
						|
// gcmDouble returns the result of doubling an element of GF(2¹²⁸).
 | 
						|
func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
 | 
						|
	msbSet := x.high&1 == 1
 | 
						|
 | 
						|
	// Because of the bit-ordering, doubling is actually a right shift.
 | 
						|
	double.high = x.high >> 1
 | 
						|
	double.high |= x.low << 63
 | 
						|
	double.low = x.low >> 1
 | 
						|
 | 
						|
	// If the most-significant bit was set before shifting then it,
 | 
						|
	// conceptually, becomes a term of x^128. This is greater than the
 | 
						|
	// irreducible polynomial so the result has to be reduced. The
 | 
						|
	// irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
 | 
						|
	// eliminate the term at x^128 which also means subtracting the other
 | 
						|
	// four terms. In characteristic 2 fields, subtraction == addition ==
 | 
						|
	// XOR.
 | 
						|
	if msbSet {
 | 
						|
		double.low ^= 0xe100000000000000
 | 
						|
	}
 | 
						|
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
var gcmReductionTable = []uint16{
 | 
						|
	0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
 | 
						|
	0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
 | 
						|
}
 | 
						|
 | 
						|
// mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize.
 | 
						|
func (g *gcm) mul(y *gcmFieldElement) {
 | 
						|
	var z gcmFieldElement
 | 
						|
 | 
						|
	for i := 0; i < 2; i++ {
 | 
						|
		word := y.high
 | 
						|
		if i == 1 {
 | 
						|
			word = y.low
 | 
						|
		}
 | 
						|
 | 
						|
		// Multiplication works by multiplying z by 16 and adding in
 | 
						|
		// one of the precomputed multiples of H.
 | 
						|
		for j := 0; j < 64; j += 4 {
 | 
						|
			msw := z.high & 0xf
 | 
						|
			z.high >>= 4
 | 
						|
			z.high |= z.low << 60
 | 
						|
			z.low >>= 4
 | 
						|
			z.low ^= uint64(gcmReductionTable[msw]) << 48
 | 
						|
 | 
						|
			// the values in |table| are ordered for
 | 
						|
			// little-endian bit positions. See the comment
 | 
						|
			// in NewGCMWithNonceSize.
 | 
						|
			t := &g.productTable[word&0xf]
 | 
						|
 | 
						|
			z.low ^= t.low
 | 
						|
			z.high ^= t.high
 | 
						|
			word >>= 4
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	*y = z
 | 
						|
}
 | 
						|
 | 
						|
// updateBlocks extends y with more polynomial terms from blocks, based on
 | 
						|
// Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
 | 
						|
func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
 | 
						|
	for len(blocks) > 0 {
 | 
						|
		y.low ^= getUint64(blocks)
 | 
						|
		y.high ^= getUint64(blocks[8:])
 | 
						|
		g.mul(y)
 | 
						|
		blocks = blocks[gcmBlockSize:]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// update extends y with more polynomial terms from data. If data is not a
 | 
						|
// multiple of gcmBlockSize bytes long then the remainder is zero padded.
 | 
						|
func (g *gcm) update(y *gcmFieldElement, data []byte) {
 | 
						|
	fullBlocks := (len(data) >> 4) << 4
 | 
						|
	g.updateBlocks(y, data[:fullBlocks])
 | 
						|
 | 
						|
	if len(data) != fullBlocks {
 | 
						|
		var partialBlock [gcmBlockSize]byte
 | 
						|
		copy(partialBlock[:], data[fullBlocks:])
 | 
						|
		g.updateBlocks(y, partialBlock[:])
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// gcmInc32 treats the final four bytes of counterBlock as a big-endian value
 | 
						|
// and increments it.
 | 
						|
func gcmInc32(counterBlock *[16]byte) {
 | 
						|
	for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
 | 
						|
		counterBlock[i]++
 | 
						|
		if counterBlock[i] != 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// sliceForAppend takes a slice and a requested number of bytes. It returns a
 | 
						|
// slice with the contents of the given slice followed by that many bytes and a
 | 
						|
// second slice that aliases into it and contains only the extra bytes. If the
 | 
						|
// original slice has sufficient capacity then no allocation is performed.
 | 
						|
func sliceForAppend(in []byte, n int) (head, tail []byte) {
 | 
						|
	if total := len(in) + n; cap(in) >= total {
 | 
						|
		head = in[:total]
 | 
						|
	} else {
 | 
						|
		head = make([]byte, total)
 | 
						|
		copy(head, in)
 | 
						|
	}
 | 
						|
	tail = head[len(in):]
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// counterCrypt crypts in to out using g.cipher in counter mode.
 | 
						|
func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
 | 
						|
	var mask [gcmBlockSize]byte
 | 
						|
 | 
						|
	for len(in) >= gcmBlockSize {
 | 
						|
		g.cipher.Encrypt(mask[:], counter[:])
 | 
						|
		gcmInc32(counter)
 | 
						|
 | 
						|
		xorWords(out, in, mask[:])
 | 
						|
		out = out[gcmBlockSize:]
 | 
						|
		in = in[gcmBlockSize:]
 | 
						|
	}
 | 
						|
 | 
						|
	if len(in) > 0 {
 | 
						|
		g.cipher.Encrypt(mask[:], counter[:])
 | 
						|
		gcmInc32(counter)
 | 
						|
		xorBytes(out, in, mask[:])
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// deriveCounter computes the initial GCM counter state from the given nonce.
 | 
						|
// See NIST SP 800-38D, section 7.1. This assumes that counter is filled with
 | 
						|
// zeros on entry.
 | 
						|
func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
 | 
						|
	// GCM has two modes of operation with respect to the initial counter
 | 
						|
	// state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path"
 | 
						|
	// for nonces of other lengths. For a 96-bit nonce, the nonce, along
 | 
						|
	// with a four-byte big-endian counter starting at one, is used
 | 
						|
	// directly as the starting counter. For other nonce sizes, the counter
 | 
						|
	// is computed by passing it through the GHASH function.
 | 
						|
	if len(nonce) == gcmStandardNonceSize {
 | 
						|
		copy(counter[:], nonce)
 | 
						|
		counter[gcmBlockSize-1] = 1
 | 
						|
	} else {
 | 
						|
		var y gcmFieldElement
 | 
						|
		g.update(&y, nonce)
 | 
						|
		y.high ^= uint64(len(nonce)) * 8
 | 
						|
		g.mul(&y)
 | 
						|
		putUint64(counter[:8], y.low)
 | 
						|
		putUint64(counter[8:], y.high)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// auth calculates GHASH(ciphertext, additionalData), masks the result with
 | 
						|
// tagMask and writes the result to out.
 | 
						|
func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmBlockSize]byte) {
 | 
						|
	var y gcmFieldElement
 | 
						|
	g.update(&y, additionalData)
 | 
						|
	g.update(&y, ciphertext)
 | 
						|
 | 
						|
	y.low ^= uint64(len(additionalData)) * 8
 | 
						|
	y.high ^= uint64(len(ciphertext)) * 8
 | 
						|
 | 
						|
	g.mul(&y)
 | 
						|
 | 
						|
	putUint64(out, y.low)
 | 
						|
	putUint64(out[8:], y.high)
 | 
						|
 | 
						|
	xorWords(out, out, tagMask[:])
 | 
						|
}
 | 
						|
 | 
						|
func getUint64(data []byte) uint64 {
 | 
						|
	r := uint64(data[0])<<56 |
 | 
						|
		uint64(data[1])<<48 |
 | 
						|
		uint64(data[2])<<40 |
 | 
						|
		uint64(data[3])<<32 |
 | 
						|
		uint64(data[4])<<24 |
 | 
						|
		uint64(data[5])<<16 |
 | 
						|
		uint64(data[6])<<8 |
 | 
						|
		uint64(data[7])
 | 
						|
	return r
 | 
						|
}
 | 
						|
 | 
						|
func putUint64(out []byte, v uint64) {
 | 
						|
	out[0] = byte(v >> 56)
 | 
						|
	out[1] = byte(v >> 48)
 | 
						|
	out[2] = byte(v >> 40)
 | 
						|
	out[3] = byte(v >> 32)
 | 
						|
	out[4] = byte(v >> 24)
 | 
						|
	out[5] = byte(v >> 16)
 | 
						|
	out[6] = byte(v >> 8)
 | 
						|
	out[7] = byte(v)
 | 
						|
}
 |