mirror of
https://github.com/immich-app/immich.git
synced 2025-07-09 03:04:16 -04:00
feat(ml): ARM NN acceleration
This commit is contained in:
parent
767fe87b2e
commit
5f6ad9e239
@ -20,6 +20,7 @@ dependencies:
|
|||||||
- torchvision
|
- torchvision
|
||||||
- transformers==4.*
|
- transformers==4.*
|
||||||
- pip:
|
- pip:
|
||||||
- multilingual-clip
|
- multilingual-clip
|
||||||
- onnx-simplifier
|
- onnx-simplifier
|
||||||
|
- tensorflow
|
||||||
category: main
|
category: main
|
||||||
|
70
machine-learning/export/models/tfclip.py
Normal file
70
machine-learning/export/models/tfclip.py
Normal file
@ -0,0 +1,70 @@
|
|||||||
|
import tempfile
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
from transformers import TFCLIPModel
|
||||||
|
|
||||||
|
from .util import ModelType, get_model_path
|
||||||
|
|
||||||
|
|
||||||
|
class _CLIPWrapper(tf.Module):
|
||||||
|
def __init__(self, model_name: str):
|
||||||
|
super(_CLIPWrapper)
|
||||||
|
self.model = TFCLIPModel.from_pretrained(model_name)
|
||||||
|
|
||||||
|
@tf.function()
|
||||||
|
def encode_image(self, input):
|
||||||
|
return self.model.get_image_features(input)
|
||||||
|
|
||||||
|
@tf.function()
|
||||||
|
def encode_text(self, input):
|
||||||
|
return self.model.get_text_features(input)
|
||||||
|
|
||||||
|
|
||||||
|
# exported model signatures use batch size 2 because of the following reasons:
|
||||||
|
# 1. ARM-NN cannot use dynamic batch sizes
|
||||||
|
# 2. batch size 1 creates a larger TF-Lite model that uses a lot (50%) more RAM
|
||||||
|
# 3. batch size 2 is ~50% faster on GPU than 1 while 4 (or larger) are not faster
|
||||||
|
# 4. batch size >2 wastes more computation if only a single image is processed
|
||||||
|
BATCH_SIZE = 2
|
||||||
|
|
||||||
|
SIGNATURE_TEXT = "encode_text"
|
||||||
|
SIGNATURE_IMAGE = "encode_image"
|
||||||
|
|
||||||
|
|
||||||
|
def to_tflite(
|
||||||
|
model_name,
|
||||||
|
output_path_image: Path | str | None,
|
||||||
|
output_path_text: Path | str | None,
|
||||||
|
context_length: int = 77,
|
||||||
|
):
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
|
_export_temporary_tf_model(model_name, tmpdir, context_length)
|
||||||
|
if output_path_image is not None:
|
||||||
|
image_path = get_model_path(output_path_image, ModelType.TFLITE)
|
||||||
|
_export_tflite_model(tmpdir, SIGNATURE_IMAGE, image_path.as_posix())
|
||||||
|
if output_path_text is not None:
|
||||||
|
text_path = get_model_path(output_path_text, ModelType.TFLITE)
|
||||||
|
_export_tflite_model(tmpdir, SIGNATURE_TEXT, text_path.as_posix())
|
||||||
|
|
||||||
|
|
||||||
|
def _export_temporary_tf_model(model_name, tmp_path: str, context_length: int):
|
||||||
|
wrapper = _CLIPWrapper(model_name)
|
||||||
|
conf = wrapper.model.config.vision_config
|
||||||
|
spec_visual = tf.TensorSpec(
|
||||||
|
shape=(BATCH_SIZE, conf.num_channels, conf.image_size, conf.image_size), dtype=tf.float32
|
||||||
|
)
|
||||||
|
encode_image = wrapper.encode_image.get_concrete_function(spec_visual)
|
||||||
|
spec_text = tf.TensorSpec(shape=(BATCH_SIZE, context_length), dtype=tf.int32)
|
||||||
|
encode_text = wrapper.encode_text.get_concrete_function(spec_text)
|
||||||
|
signatures = {"encode_text": encode_text, "encode_image": encode_image}
|
||||||
|
tf.saved_model.save(wrapper, tmp_path, signatures)
|
||||||
|
|
||||||
|
|
||||||
|
def _export_tflite_model(tmp_path: str, signature: str, output_path: str):
|
||||||
|
converter = tf.lite.TFLiteConverter.from_saved_model(tmp_path, signature_keys=[signature])
|
||||||
|
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||||
|
converter.target_spec.supported_types = [tf.float32]
|
||||||
|
tflite_model = converter.convert()
|
||||||
|
with open(output_path, "wb") as f:
|
||||||
|
f.write(tflite_model)
|
@ -1,12 +1,18 @@
|
|||||||
import json
|
import json
|
||||||
|
from enum import Enum
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
|
|
||||||
def get_model_path(output_dir: Path | str) -> Path:
|
class ModelType(Enum):
|
||||||
|
ONNX = "onnx"
|
||||||
|
TFLITE = "tflite"
|
||||||
|
|
||||||
|
|
||||||
|
def get_model_path(output_dir: Path | str, model_type: ModelType = ModelType.ONNX) -> Path:
|
||||||
output_dir = Path(output_dir)
|
output_dir = Path(output_dir)
|
||||||
output_dir.mkdir(parents=True, exist_ok=True)
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
return output_dir / "model.onnx"
|
return output_dir / f"model.{model_type.value}"
|
||||||
|
|
||||||
|
|
||||||
def save_config(config: Any, output_path: Path | str) -> None:
|
def save_config(config: Any, output_path: Path | str) -> None:
|
||||||
|
@ -4,7 +4,7 @@ from pathlib import Path
|
|||||||
from tempfile import TemporaryDirectory
|
from tempfile import TemporaryDirectory
|
||||||
|
|
||||||
from huggingface_hub import create_repo, login, upload_folder
|
from huggingface_hub import create_repo, login, upload_folder
|
||||||
from models import mclip, openclip
|
from models import mclip, openclip, tfclip
|
||||||
from rich.progress import Progress
|
from rich.progress import Progress
|
||||||
|
|
||||||
models = [
|
models = [
|
||||||
@ -37,9 +37,10 @@ models = [
|
|||||||
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
|
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
|
||||||
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
|
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
|
||||||
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
|
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
|
||||||
|
"openai/clip-vit-base-patch32",
|
||||||
]
|
]
|
||||||
|
|
||||||
login(token=os.environ["HF_AUTH_TOKEN"])
|
# login(token=os.environ["HF_AUTH_TOKEN"])
|
||||||
|
|
||||||
with Progress() as progress:
|
with Progress() as progress:
|
||||||
task1 = progress.add_task("[green]Exporting models...", total=len(models))
|
task1 = progress.add_task("[green]Exporting models...", total=len(models))
|
||||||
@ -65,6 +66,8 @@ with Progress() as progress:
|
|||||||
textual_dir = tmpdir / model_name / "textual"
|
textual_dir = tmpdir / model_name / "textual"
|
||||||
if model.startswith("M-CLIP"):
|
if model.startswith("M-CLIP"):
|
||||||
mclip.to_onnx(model, visual_dir, textual_dir)
|
mclip.to_onnx(model, visual_dir, textual_dir)
|
||||||
|
elif "/" in model:
|
||||||
|
tfclip.to_tflite(model, visual_dir.as_posix(), textual_dir.as_posix())
|
||||||
else:
|
else:
|
||||||
name, _, pretrained = model_name.partition("__")
|
name, _, pretrained = model_name.partition("__")
|
||||||
openclip.to_onnx(openclip.OpenCLIPModelConfig(name, pretrained), visual_dir, textual_dir)
|
openclip.to_onnx(openclip.OpenCLIPModelConfig(name, pretrained), visual_dir, textual_dir)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user