diff --git a/machine-learning/app/models/facial_recognition/recognition.py b/machine-learning/app/models/facial_recognition/recognition.py index 044f19b06f..5e8a6f69ec 100644 --- a/machine-learning/app/models/facial_recognition/recognition.py +++ b/machine-learning/app/models/facial_recognition/recognition.py @@ -20,9 +20,8 @@ class FaceRecognizer(InferenceModel): depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)] identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION) - def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None: + def __init__(self, model_name: str, **model_kwargs: Any) -> None: super().__init__(model_name, **model_kwargs) - self.min_score = model_kwargs.pop("minScore", min_score) max_batch_size = settings.max_batch_size.facial_recognition if settings.max_batch_size else None self.batch_size = max_batch_size if max_batch_size else self._batch_size_default diff --git a/machine-learning/app/test_main.py b/machine-learning/app/test_main.py index b986f63668..2d489025d7 100644 --- a/machine-learning/app/test_main.py +++ b/machine-learning/app/test_main.py @@ -324,7 +324,7 @@ class TestAnnSession: session.run(None, input_feed) ann_session.return_value.execute.assert_called_once_with(123, [input1, input2]) - np_spy.call_count == 2 + assert np_spy.call_count == 2 np_spy.assert_has_calls([mock.call(input1), mock.call(input2)]) @@ -457,11 +457,14 @@ class TestCLIP: class TestFaceRecognition: - def test_set_min_score(self, mocker: MockerFixture) -> None: - mocker.patch.object(FaceRecognizer, "load") - face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5) + def test_set_min_score(self, snapshot_download: mock.Mock, ort_session: mock.Mock, path: mock.Mock) -> None: + path.return_value.__truediv__.return_value.__truediv__.return_value.suffix = ".onnx" - assert face_recognizer.min_score == 0.5 + face_detector = FaceDetector("buffalo_s", min_score=0.5, cache_dir="test_cache") + face_detector.load() + + assert face_detector.min_score == 0.5 + assert face_detector.model.det_thresh == 0.5 def test_detection(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None: mocker.patch.object(FaceDetector, "load") diff --git a/machine-learning/locustfile.py b/machine-learning/locustfile.py index 81087bee8c..9a07a99688 100644 --- a/machine-learning/locustfile.py +++ b/machine-learning/locustfile.py @@ -14,12 +14,6 @@ byte_image = BytesIO() def _(parser: ArgumentParser) -> None: parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai") parser.add_argument("--face-model", type=str, default="buffalo_l") - parser.add_argument( - "--tag-min-score", - type=int, - default=0.0, - help="Returns all tags at or above this score. The default returns all tags.", - ) parser.add_argument( "--face-min-score", type=int, @@ -74,10 +68,10 @@ class RecognitionFormDataLoadTest(InferenceLoadTest): "facial-recognition": { "recognition": { "modelName": self.environment.parsed_options.face_model, - "options": {"minScore": self.environment.parsed_options.face_min_score}, }, "detection": { "modelName": self.environment.parsed_options.face_model, + "options": {"minScore": self.environment.parsed_options.face_min_score}, }, } }