mirror of
https://github.com/immich-app/immich.git
synced 2025-06-22 15:00:52 -04:00
all infrencing works with 1 max job concurrency
This commit is contained in:
parent
082c426e34
commit
a94fad543b
@ -4,8 +4,10 @@ from pathlib import Path
|
|||||||
from typing import Any, List
|
from typing import Any, List
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import onnxruntime as ort
|
||||||
from numpy.typing import NDArray
|
from numpy.typing import NDArray
|
||||||
from rknnlite.api import RKNNLite # Importing RKNN API
|
from rknnlite.api import RKNNLite
|
||||||
|
|
||||||
|
|
||||||
from app.models.constants import SUPPORTED_PROVIDERS
|
from app.models.constants import SUPPORTED_PROVIDERS
|
||||||
from app.schemas import SessionNode
|
from app.schemas import SessionNode
|
||||||
@ -16,55 +18,55 @@ from ..config import log, settings
|
|||||||
class RknnSession:
|
class RknnSession:
|
||||||
def __init__(self, model_path: Path | str):
|
def __init__(self, model_path: Path | str):
|
||||||
self.model_path = Path(model_path)
|
self.model_path = Path(model_path)
|
||||||
self.rknn = RKNNLite() # Initialize RKNN object
|
|
||||||
# self.rknn.config(target_platform='rk3566')
|
|
||||||
# Load the RKNN model
|
|
||||||
log.info(f"Loading RKNN model from {self.model_path}")
|
|
||||||
self._load_model()
|
|
||||||
|
|
||||||
def _load_model(self) -> None:
|
self.ort_model_path = str(self.model_path).replace(".rknn", ".onnx")
|
||||||
# ret = self.rknn.load_onnx(self.model_path.as_posix())
|
|
||||||
|
self.rknn = RKNNLite()
|
||||||
|
|
||||||
|
log.info(f"Loading RKNN model from {self.model_path}")
|
||||||
|
|
||||||
|
self.ort_session = ort.InferenceSession(
|
||||||
|
self.ort_model_path,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ret = self.rknn.load_onnx(self.model_path)
|
||||||
print('--> Load RKNN model')
|
print('--> Load RKNN model')
|
||||||
ret = self.rknn.load_rknn(self.model_path.as_posix())
|
ret = self.rknn.load_rknn(self.model_path.as_posix())
|
||||||
if ret != 0:
|
if ret != 0:
|
||||||
raise RuntimeError("Failed to load RKNN model")
|
raise RuntimeError("Failed to load RKNN model")
|
||||||
# print('--> Building model')
|
|
||||||
# ret = self.rknn.build(do_quantization=False)
|
|
||||||
if ret != 0:
|
|
||||||
print('Build model failed!')
|
|
||||||
exit(ret)
|
|
||||||
|
|
||||||
ret = self.rknn.init_runtime()
|
ret = self.rknn.init_runtime()
|
||||||
if ret != 0:
|
if ret != 0:
|
||||||
raise RuntimeError("Failed to initialize RKNN runtime")
|
raise RuntimeError("Failed to initialize RKNN runtime")
|
||||||
|
|
||||||
def get_inputs(self) -> List[SessionNode]:
|
def get_inputs(self) -> list[SessionNode]:
|
||||||
input_attrs = self.rknn.query_inputs()
|
inputs: list[SessionNode] = self.ort_session.get_inputs()
|
||||||
return input_attrs # RKNN does not provide direct SessionNode equivalent
|
return inputs
|
||||||
|
|
||||||
def get_outputs(self) -> List[SessionNode]:
|
def get_outputs(self) -> list[SessionNode]:
|
||||||
output_attrs = self.rknn.query_outputs()
|
outputs: list[SessionNode] = self.ort_session.get_outputs()
|
||||||
return output_attrs
|
return outputs
|
||||||
|
|
||||||
def run(
|
def run(
|
||||||
self,
|
self,
|
||||||
output_names: list[str] | None,
|
output_names: list[str] | None,
|
||||||
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
||||||
run_options: Any = None,
|
run_options: Any = None,
|
||||||
) -> List[NDArray[np.float32]]:
|
):
|
||||||
inputs = [v for v in input_feed.values()]
|
|
||||||
|
|
||||||
# Run inference
|
input_data = [np.ascontiguousarray(v) for v in input_feed.values()][0]
|
||||||
log.debug(f"Running inference on RKNN model")
|
|
||||||
outputs = self.rknn.inference(inputs=inputs)
|
|
||||||
|
# log.info(f"Running inference on RKNN model")
|
||||||
|
|
||||||
|
outputs = self.rknn.inference(inputs=[input_data])
|
||||||
|
if not outputs:
|
||||||
|
outputs = self.rknn.inference(inputs=[input_data], data_format='nchw')
|
||||||
|
|
||||||
|
# log.info("inputs:")
|
||||||
|
# log.info(input_data)
|
||||||
|
# log.info("outputs:")
|
||||||
|
# log.info(outputs)
|
||||||
|
# log.info("RKNN END")
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def release(self) -> None:
|
|
||||||
log.info("Releasing RKNN resources")
|
|
||||||
self.rknn.release()
|
|
||||||
|
|
||||||
|
|
||||||
# Example Usage:
|
|
||||||
# session = RknnSession(model_path="path/to/model.rknn")
|
|
||||||
# outputs = session.run(input_feed={"input_name": input_data})
|
|
||||||
# session.release()
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user