add input outputs

This commit is contained in:
yoni13 2025-01-19 12:10:01 +00:00
parent 2b967ca358
commit ac4ce3ea9c

View File

@ -1,7 +1,7 @@
from __future__ import annotations
from pathlib import Path
from typing import Any
from typing import Any, NamedTuple
import numpy as np
from numpy.typing import NDArray
@ -18,6 +18,27 @@ def runInference(rknn_lite: Any, input: list[NDArray[np.float32]]) -> list[NDArr
return outputs
input_output_mapping = {
"buffalo_l": {
"detection": {
"input": {"norm_tensor:0": (1, 3, 640, 640)},
"output": {
"norm_tensor:1": (12800, 1),
"norm_tensor:2": (3200, 1),
"norm_tensor:3": (800, 1),
"norm_tensor:4": (12800, 4),
"norm_tensor:5": (3200, 4),
"norm_tensor:6": (800, 4),
"norm_tensor:7": (12800, 10),
"norm_tensor:8": (3200, 10),
"norm_tensor:9": (800, 10),
},
},
"recognition": {"input": {"norm_tensor:0": (1, 3, 112, 112)}, "output": {"norm_tensor:1": (1, 512)}},
}
}
class RknnSession:
def __init__(self, model_path: Path | str):
self.model_path = Path(str(model_path).replace("model", soc_name))
@ -32,10 +53,24 @@ class RknnSession:
self.rknnpool.release()
def get_inputs(self) -> list[SessionNode]:
raise NotImplementedError
for model_name in input_output_mapping:
if model_name in self.model_path.as_posix():
model_type = "detection" if "detection" in self.model_path.as_posix() else "recognition"
return [
RknnNode(name=k, shape=v)
for k, v in input_output_mapping[model_name][model_type]["input"].items()
]
raise ValueError(f"Model {self.model_path} not found in input_output_mapping.")
def get_outputs(self) -> list[SessionNode]:
raise NotImplementedError
for model_name in input_output_mapping:
if model_name in self.model_path.as_posix():
model_type = "detection" if "detection" in self.model_path.as_posix() else "recognition"
return [
RknnNode(name=k, shape=v)
for k, v in input_output_mapping[model_name][model_type]["output"].items()
]
raise ValueError(f"Model {self.model_path} not found in input_output_mapping.")
def run(
self,
@ -47,3 +82,8 @@ class RknnSession:
self.rknnpool.put(input_data)
outputs: list[NDArray[np.float32]] = self.rknnpool.get()
return outputs
class RknnNode(NamedTuple):
name: str | None
shape: tuple[int, ...]