mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-31 10:37:11 -04:00 
			
		
		
		
	dev(ml): fixed docker-compose.dev.yml, updated locust (#3951)
				
					
				
			* fixed dev docker compose * updated locustfile * deleted old script, moved comments to locustfile
This commit is contained in:
		
							parent
							
								
									bea287c5b3
								
							
						
					
					
						commit
						b7fd5dcb4a
					
				| @ -34,7 +34,7 @@ services: | ||||
|     ports: | ||||
|       - 3003:3003 | ||||
|     volumes: | ||||
|       - ../machine-learning/app:/usr/src/app | ||||
|       - ../machine-learning:/usr/src/app | ||||
|       - model-cache:/cache | ||||
|     env_file: | ||||
|       - .env | ||||
|  | ||||
| @ -1,24 +0,0 @@ | ||||
| export MACHINE_LEARNING_CACHE_FOLDER=/tmp/model_cache | ||||
| export MACHINE_LEARNING_MIN_FACE_SCORE=0.034 # returns 1 face per request; setting this to 0 blows up the number of faces to the thousands | ||||
| export MACHINE_LEARNING_MIN_TAG_SCORE=0.0 | ||||
| export PID_FILE=/tmp/locust_pid | ||||
| export LOG_FILE=/tmp/gunicorn.log | ||||
| export HEADLESS=false | ||||
| export HOST=127.0.0.1:3003 | ||||
| export CONCURRENCY=4 | ||||
| export NUM_ENDPOINTS=3 | ||||
| export PYTHONPATH=app | ||||
| 
 | ||||
| gunicorn app.main:app --worker-class uvicorn.workers.UvicornWorker \ | ||||
|     --bind $HOST --daemon --error-logfile $LOG_FILE --pid $PID_FILE | ||||
| while true ; do | ||||
|     echo "Loading models..." | ||||
|     sleep 5 | ||||
|     if cat $LOG_FILE | grep -q -E "startup complete"; then break; fi | ||||
| done | ||||
| 
 | ||||
| # "users" are assigned only one task, so multiply concurrency by the number of tasks | ||||
| locust --host http://$HOST --web-host 127.0.0.1 \ | ||||
|     --run-time 120s --users $(($CONCURRENCY * $NUM_ENDPOINTS)) $(if $HEADLESS; then echo "--headless"; fi) | ||||
| 
 | ||||
| if [[ -e $PID_FILE ]]; then kill $(cat $PID_FILE); fi | ||||
| @ -1,13 +1,32 @@ | ||||
| from io import BytesIO | ||||
| import json | ||||
| from typing import Any | ||||
| 
 | ||||
| from locust import HttpUser, events, task | ||||
| from locust.env import Environment | ||||
| from PIL import Image | ||||
| from argparse import ArgumentParser | ||||
| byte_image = BytesIO() | ||||
| 
 | ||||
| 
 | ||||
| @events.init_command_line_parser.add_listener | ||||
| def _(parser: ArgumentParser) -> None: | ||||
|     parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50") | ||||
|     parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai") | ||||
|     parser.add_argument("--face-model", type=str, default="buffalo_l") | ||||
|     parser.add_argument("--tag-min-score", type=int, default=0.0,  | ||||
|                         help="Returns all tags at or above this score. The default returns all tags.") | ||||
|     parser.add_argument("--face-min-score", type=int, default=0.034,  | ||||
|                         help=("Returns all faces at or above this score. The default returns 1 face per request; " | ||||
|                               "setting this to 0 blows up the number of faces to the thousands.")) | ||||
|     parser.add_argument("--image-size", type=int, default=1000) | ||||
| 
 | ||||
| 
 | ||||
| @events.test_start.add_listener | ||||
| def on_test_start(environment, **kwargs): | ||||
| def on_test_start(environment: Environment, **kwargs: Any) -> None: | ||||
|     global byte_image | ||||
|     image = Image.new("RGB", (1000, 1000)) | ||||
|     assert environment.parsed_options is not None | ||||
|     image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size)) | ||||
|     byte_image = BytesIO() | ||||
|     image.save(byte_image, format="jpeg") | ||||
| 
 | ||||
| @ -19,34 +38,55 @@ class InferenceLoadTest(HttpUser): | ||||
|     headers: dict[str, str] = {"Content-Type": "image/jpg"} | ||||
| 
 | ||||
|     # re-use the image across all instances in a process | ||||
|     def on_start(self): | ||||
|     def on_start(self) -> None: | ||||
|         global byte_image | ||||
|         self.data = byte_image.getvalue() | ||||
| 
 | ||||
| 
 | ||||
| class ClassificationLoadTest(InferenceLoadTest): | ||||
| class ClassificationFormDataLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def classify(self): | ||||
|         self.client.post( | ||||
|             "/image-classifier/tag-image", data=self.data, headers=self.headers | ||||
|         ) | ||||
|     def classify(self) -> None: | ||||
|         data = [ | ||||
|             ("modelName", self.environment.parsed_options.clip_model), | ||||
|             ("modelType", "clip"), | ||||
|             ("options", json.dumps({"minScore": self.environment.parsed_options.tag_min_score})), | ||||
|         ] | ||||
|         files = {"image": self.data} | ||||
|         self.client.post("/predict", data=data, files=files) | ||||
| 
 | ||||
| 
 | ||||
| class CLIPLoadTest(InferenceLoadTest): | ||||
| class CLIPTextFormDataLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def encode_image(self): | ||||
|         self.client.post( | ||||
|             "/sentence-transformer/encode-image", | ||||
|             data=self.data, | ||||
|             headers=self.headers, | ||||
|         ) | ||||
|     def encode_text(self) -> None: | ||||
|         data = [ | ||||
|             ("modelName", self.environment.parsed_options.clip_model), | ||||
|             ("modelType", "clip"), | ||||
|             ("options", json.dumps({"mode": "text"})), | ||||
|             ("text", "test search query") | ||||
|         ] | ||||
|         self.client.post("/predict", data=data) | ||||
| 
 | ||||
| 
 | ||||
| class RecognitionLoadTest(InferenceLoadTest): | ||||
| class CLIPVisionFormDataLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def recognize(self): | ||||
|         self.client.post( | ||||
|             "/facial-recognition/detect-faces", | ||||
|             data=self.data, | ||||
|             headers=self.headers, | ||||
|         ) | ||||
|     def encode_image(self) -> None: | ||||
|         data = [ | ||||
|             ("modelName", self.environment.parsed_options.clip_model), | ||||
|             ("modelType", "clip"), | ||||
|             ("options", json.dumps({"mode": "vision"})), | ||||
|         ] | ||||
|         files = {"image": self.data} | ||||
|         self.client.post("/predict", data=data, files=files) | ||||
| 
 | ||||
| 
 | ||||
| class RecognitionFormDataLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def recognize(self) -> None: | ||||
|         data = [ | ||||
|             ("modelName", self.environment.parsed_options.face_model), | ||||
|             ("modelType", "facial-recognition"), | ||||
|             ("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})), | ||||
|         ] | ||||
|         files = {"image": self.data} | ||||
|              | ||||
|         self.client.post("/predict", data=data, files=files) | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user