mirror of
https://github.com/immich-app/immich.git
synced 2025-07-08 10:44:15 -04:00
ViT-B-32__openai/textual/ Runs with emulator now.
This commit is contained in:
parent
7fddf282cf
commit
bc849e2e9f
@ -44,7 +44,7 @@ class Settings(BaseSettings):
|
||||
ann: bool = True
|
||||
ann_fp16_turbo: bool = False
|
||||
ann_tuning_level: int = 2
|
||||
rknn: bool = True
|
||||
rknn: bool = False
|
||||
preload: PreloadModelData | None = None
|
||||
max_batch_size: MaxBatchSize | None = None
|
||||
|
||||
|
@ -46,6 +46,7 @@ class OrtSession:
|
||||
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
||||
run_options: Any = None,
|
||||
) -> list[NDArray[np.float32]]:
|
||||
print(input_feed)
|
||||
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
|
||||
return outputs
|
||||
|
||||
|
@ -17,15 +17,20 @@ class RknnSession:
|
||||
def __init__(self, model_path: Path | str):
|
||||
self.model_path = Path(model_path)
|
||||
self.rknn = RKNN() # Initialize RKNN object
|
||||
|
||||
self.rknn.config(target_platform='rk3566')
|
||||
# Load the RKNN model
|
||||
log.info(f"Loading RKNN model from {self.model_path}")
|
||||
self._load_model()
|
||||
|
||||
def _load_model(self) -> None:
|
||||
ret = self.rknn.load_rknn(self.model_path.as_posix())
|
||||
ret = self.rknn.load_onnx(self.model_path.as_posix())
|
||||
if ret != 0:
|
||||
raise RuntimeError("Failed to load RKNN model")
|
||||
print('--> Building model')
|
||||
ret = self.rknn.build(do_quantization=False)
|
||||
if ret != 0:
|
||||
print('Build model failed!')
|
||||
exit(ret)
|
||||
|
||||
ret = self.rknn.init_runtime()
|
||||
if ret != 0:
|
||||
@ -41,15 +46,16 @@ class RknnSession:
|
||||
|
||||
def run(
|
||||
self,
|
||||
input_feed: dict[str, NDArray[np.float32] | NDArray[np.int32]],
|
||||
output_names: list[str] | None,
|
||||
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
||||
run_options: Any = None,
|
||||
) -> List[NDArray[np.float32]]:
|
||||
print(input_feed)
|
||||
inputs = [v for v in input_feed.values()]
|
||||
|
||||
# Run inference
|
||||
log.debug(f"Running inference on RKNN model")
|
||||
ret, outputs = self.rknn.inference(inputs=inputs)
|
||||
if ret != 0:
|
||||
raise RuntimeError("Inference failed")
|
||||
outputs = self.rknn.inference(inputs=inputs)
|
||||
return outputs
|
||||
|
||||
def release(self) -> None:
|
||||
|
Loading…
x
Reference in New Issue
Block a user