mirror of
https://github.com/immich-app/immich.git
synced 2025-07-08 18:54:18 -04:00
ViT-B-32__openai/textual/ Runs with emulator now.
This commit is contained in:
parent
7fddf282cf
commit
bc849e2e9f
@ -44,7 +44,7 @@ class Settings(BaseSettings):
|
|||||||
ann: bool = True
|
ann: bool = True
|
||||||
ann_fp16_turbo: bool = False
|
ann_fp16_turbo: bool = False
|
||||||
ann_tuning_level: int = 2
|
ann_tuning_level: int = 2
|
||||||
rknn: bool = True
|
rknn: bool = False
|
||||||
preload: PreloadModelData | None = None
|
preload: PreloadModelData | None = None
|
||||||
max_batch_size: MaxBatchSize | None = None
|
max_batch_size: MaxBatchSize | None = None
|
||||||
|
|
||||||
|
@ -46,6 +46,7 @@ class OrtSession:
|
|||||||
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
||||||
run_options: Any = None,
|
run_options: Any = None,
|
||||||
) -> list[NDArray[np.float32]]:
|
) -> list[NDArray[np.float32]]:
|
||||||
|
print(input_feed)
|
||||||
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
|
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
|
@ -17,15 +17,20 @@ class RknnSession:
|
|||||||
def __init__(self, model_path: Path | str):
|
def __init__(self, model_path: Path | str):
|
||||||
self.model_path = Path(model_path)
|
self.model_path = Path(model_path)
|
||||||
self.rknn = RKNN() # Initialize RKNN object
|
self.rknn = RKNN() # Initialize RKNN object
|
||||||
|
self.rknn.config(target_platform='rk3566')
|
||||||
# Load the RKNN model
|
# Load the RKNN model
|
||||||
log.info(f"Loading RKNN model from {self.model_path}")
|
log.info(f"Loading RKNN model from {self.model_path}")
|
||||||
self._load_model()
|
self._load_model()
|
||||||
|
|
||||||
def _load_model(self) -> None:
|
def _load_model(self) -> None:
|
||||||
ret = self.rknn.load_rknn(self.model_path.as_posix())
|
ret = self.rknn.load_onnx(self.model_path.as_posix())
|
||||||
if ret != 0:
|
if ret != 0:
|
||||||
raise RuntimeError("Failed to load RKNN model")
|
raise RuntimeError("Failed to load RKNN model")
|
||||||
|
print('--> Building model')
|
||||||
|
ret = self.rknn.build(do_quantization=False)
|
||||||
|
if ret != 0:
|
||||||
|
print('Build model failed!')
|
||||||
|
exit(ret)
|
||||||
|
|
||||||
ret = self.rknn.init_runtime()
|
ret = self.rknn.init_runtime()
|
||||||
if ret != 0:
|
if ret != 0:
|
||||||
@ -41,15 +46,16 @@ class RknnSession:
|
|||||||
|
|
||||||
def run(
|
def run(
|
||||||
self,
|
self,
|
||||||
input_feed: dict[str, NDArray[np.float32] | NDArray[np.int32]],
|
output_names: list[str] | None,
|
||||||
|
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
||||||
|
run_options: Any = None,
|
||||||
) -> List[NDArray[np.float32]]:
|
) -> List[NDArray[np.float32]]:
|
||||||
|
print(input_feed)
|
||||||
inputs = [v for v in input_feed.values()]
|
inputs = [v for v in input_feed.values()]
|
||||||
|
|
||||||
# Run inference
|
# Run inference
|
||||||
log.debug(f"Running inference on RKNN model")
|
log.debug(f"Running inference on RKNN model")
|
||||||
ret, outputs = self.rknn.inference(inputs=inputs)
|
outputs = self.rknn.inference(inputs=inputs)
|
||||||
if ret != 0:
|
|
||||||
raise RuntimeError("Inference failed")
|
|
||||||
return outputs
|
return outputs
|
||||||
|
|
||||||
def release(self) -> None:
|
def release(self) -> None:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user