chore(ml): remove exporter (#17182)

* remove exporter code

* update gha
This commit is contained in:
Mert 2025-03-27 14:48:02 -04:00 committed by GitHub
parent 16e0166d22
commit f7d730eb05
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 2 additions and 2882 deletions

View File

@ -395,10 +395,10 @@ jobs:
uv sync --extra cpu uv sync --extra cpu
- name: Lint with ruff - name: Lint with ruff
run: | run: |
uv run ruff check --output-format=github app export uv run ruff check --output-format=github app
- name: Check black formatting - name: Check black formatting
run: | run: |
uv run black --check app export uv run black --check app
- name: Run mypy type checking - name: Run mypy type checking
run: | run: |
uv run mypy --strict app/ uv run mypy --strict app/

View File

@ -1 +0,0 @@
3.12

View File

@ -1,165 +0,0 @@
import json
import resource
from pathlib import Path
import typer
from tenacity import retry, stop_after_attempt, wait_fixed
from typing_extensions import Annotated
from .exporters.constants import DELETE_PATTERNS, SOURCE_TO_METADATA, ModelSource, ModelTask
from .exporters.onnx import export as onnx_export
from .exporters.rknn import export as rknn_export
app = typer.Typer(pretty_exceptions_show_locals=False)
def generate_readme(model_name: str, model_source: ModelSource) -> str:
(name, link, type) = SOURCE_TO_METADATA[model_source]
match model_source:
case ModelSource.MCLIP:
tags = ["immich", "clip", "multilingual"]
case ModelSource.OPENCLIP:
tags = ["immich", "clip"]
lowered = model_name.lower()
if "xlm" in lowered or "nllb" in lowered:
tags.append("multilingual")
case ModelSource.INSIGHTFACE:
tags = ["immich", "facial-recognition"]
case _:
raise ValueError(f"Unsupported model source {model_source}")
return f"""---
tags:
{" - " + "\n - ".join(tags)}
---
# Model Description
This repo contains ONNX exports for the associated {type} model by {name}. See the [{name}]({link}) repo for more info.
This repo is specifically intended for use with [Immich](https://immich.app/), a self-hosted photo library.
"""
def clean_name(model_name: str) -> str:
hf_model_name = model_name.split("/")[-1]
hf_model_name = hf_model_name.replace("xlm-roberta-large", "XLM-Roberta-Large")
hf_model_name = hf_model_name.replace("xlm-roberta-base", "XLM-Roberta-Base")
return hf_model_name
@app.command()
def export(model_name: str, model_source: ModelSource, output_dir: Path = Path("models"), cache: bool = True) -> None:
hf_model_name = clean_name(model_name)
output_dir = output_dir / hf_model_name
match model_source:
case ModelSource.MCLIP | ModelSource.OPENCLIP:
output_dir.mkdir(parents=True, exist_ok=True)
onnx_export(model_name, model_source, output_dir, cache=cache)
case ModelSource.INSIGHTFACE:
from huggingface_hub import snapshot_download
# TODO: start from insightface dump instead of downloading from HF
snapshot_download(f"immich-app/{hf_model_name}", local_dir=output_dir)
case _:
raise ValueError(f"Unsupported model source {model_source}")
try:
rknn_export(output_dir, cache=cache)
except Exception as e:
print(f"Failed to export model {model_name} to rknn: {e}")
(output_dir / "rknpu").unlink(missing_ok=True)
readme_path = output_dir / "README.md"
if not (cache or readme_path.exists()):
with open(readme_path, "w") as f:
f.write(generate_readme(model_name, model_source))
@app.command()
def profile(model_dir: Path, model_task: ModelTask, output_path: Path) -> None:
from timeit import timeit
import numpy as np
import onnxruntime as ort
np.random.seed(0)
sess_options = ort.SessionOptions()
sess_options.enable_cpu_mem_arena = False
providers = ["CPUExecutionProvider"]
provider_options = [{"arena_extend_strategy": "kSameAsRequested"}]
match model_task:
case ModelTask.SEARCH:
textual = ort.InferenceSession(
model_dir / "textual" / "model.onnx",
sess_options=sess_options,
providers=providers,
provider_options=provider_options,
)
tokens = {node.name: np.random.rand(*node.shape).astype(np.int32) for node in textual.get_inputs()}
visual = ort.InferenceSession(
model_dir / "visual" / "model.onnx",
sess_options=sess_options,
providers=providers,
provider_options=provider_options,
)
image = {node.name: np.random.rand(*node.shape).astype(np.float32) for node in visual.get_inputs()}
def predict() -> None:
textual.run(None, tokens)
visual.run(None, image)
case ModelTask.FACIAL_RECOGNITION:
detection = ort.InferenceSession(
model_dir / "detection" / "model.onnx",
sess_options=sess_options,
providers=providers,
provider_options=provider_options,
)
image = {node.name: np.random.rand(1, 3, 640, 640).astype(np.float32) for node in detection.get_inputs()}
recognition = ort.InferenceSession(
model_dir / "recognition" / "model.onnx",
sess_options=sess_options,
providers=providers,
provider_options=provider_options,
)
face = {node.name: np.random.rand(1, 3, 112, 112).astype(np.float32) for node in recognition.get_inputs()}
def predict() -> None:
detection.run(None, image)
recognition.run(None, face)
case _:
raise ValueError(f"Unsupported model task {model_task}")
predict()
ms = timeit(predict, number=100)
rss = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
json.dump({"pretrained_model": model_dir.name, "peak_rss": rss, "exec_time_ms": ms}, output_path.open("w"))
print(f"Model {model_dir.name} took {ms:.2f}ms per iteration using {rss / 1024:.2f}MiB of memory")
@app.command()
def upload(
model_dir: Path,
hf_organization: str = "immich-app",
hf_auth_token: Annotated[str | None, typer.Option(envvar="HF_AUTH_TOKEN")] = None,
) -> None:
from huggingface_hub import create_repo, upload_folder
repo_id = f"{hf_organization}/{model_dir.name}"
@retry(stop=stop_after_attempt(5), wait=wait_fixed(5))
def upload_model() -> None:
create_repo(repo_id, exist_ok=True, token=hf_auth_token)
upload_folder(
repo_id=repo_id,
folder_path=model_dir,
# remote repo files to be deleted before uploading
# deletion is in the same commit as the upload, so it's atomic
delete_patterns=DELETE_PATTERNS,
token=hf_auth_token,
)
upload_model()

View File

@ -1,3 +0,0 @@
from immich_model_exporter import app
app()

View File

@ -1,54 +0,0 @@
from enum import StrEnum
from typing import NamedTuple
class ModelSource(StrEnum):
INSIGHTFACE = "insightface"
MCLIP = "mclip"
OPENCLIP = "openclip"
class ModelTask(StrEnum):
FACIAL_RECOGNITION = "facial-recognition"
SEARCH = "clip"
class SourceMetadata(NamedTuple):
name: str
link: str
type: str
SOURCE_TO_METADATA = {
ModelSource.MCLIP: SourceMetadata("M-CLIP", "https://huggingface.co/M-CLIP", "CLIP"),
ModelSource.OPENCLIP: SourceMetadata("OpenCLIP", "https://github.com/mlfoundations/open_clip", "CLIP"),
ModelSource.INSIGHTFACE: SourceMetadata(
"InsightFace", "https://github.com/deepinsight/insightface/tree/master", "facial recognition"
),
}
SOURCE_TO_TASK = {
ModelSource.MCLIP: ModelTask.SEARCH,
ModelSource.OPENCLIP: ModelTask.SEARCH,
ModelSource.INSIGHTFACE: ModelTask.FACIAL_RECOGNITION,
}
RKNN_SOCS = ["rk3566", "rk3568", "rk3576", "rk3588"]
# glob to delete old UUID blobs when reuploading models
_uuid_char = "[a-fA-F0-9]"
_uuid_glob = _uuid_char * 8 + "-" + _uuid_char * 4 + "-" + _uuid_char * 4 + "-" + _uuid_char * 4 + "-" + _uuid_char * 12
DELETE_PATTERNS = [
"**/*onnx*",
"**/Constant*",
"**/*.weight",
"**/*.bias",
"**/*.proj",
"**/*in_proj_bias",
"**/*.npy",
"**/*.latent",
"**/*.pos_embed",
f"**/{_uuid_glob}",
]

View File

@ -1,20 +0,0 @@
from pathlib import Path
from ..constants import ModelSource
from .models import mclip, openclip
def export(
model_name: str, model_source: ModelSource, output_dir: Path, opset_version: int = 19, cache: bool = True
) -> None:
visual_dir = output_dir / "visual"
textual_dir = output_dir / "textual"
match model_source:
case ModelSource.MCLIP:
mclip.to_onnx(model_name, opset_version, visual_dir, textual_dir, cache=cache)
case ModelSource.OPENCLIP:
name, _, pretrained = model_name.partition("__")
config = openclip.OpenCLIPModelConfig(name, pretrained)
openclip.to_onnx(config, opset_version, visual_dir, textual_dir, cache=cache)
case _:
raise ValueError(f"Unsupported model source {model_source}")

View File

@ -1,77 +0,0 @@
import warnings
from pathlib import Path
from typing import Any
from .openclip import OpenCLIPModelConfig
from .openclip import to_onnx as openclip_to_onnx
from .util import get_model_path
_MCLIP_TO_OPENCLIP = {
"M-CLIP/XLM-Roberta-Large-Vit-B-32": OpenCLIPModelConfig("ViT-B-32", "openai"),
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus": OpenCLIPModelConfig("ViT-B-16-plus-240", "laion400m_e32"),
"M-CLIP/LABSE-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"),
"M-CLIP/XLM-Roberta-Large-Vit-L-14": OpenCLIPModelConfig("ViT-L-14", "openai"),
}
def to_onnx(
model_name: str,
opset_version: int,
output_dir_visual: Path | str,
output_dir_textual: Path | str,
cache: bool = True,
) -> tuple[Path, Path]:
textual_path = get_model_path(output_dir_textual)
if not cache or not textual_path.exists():
import torch
from multilingual_clip.pt_multilingual_clip import MultilingualCLIP
from transformers import AutoTokenizer
torch.backends.mha.set_fastpath_enabled(False)
model = MultilingualCLIP.from_pretrained(model_name)
AutoTokenizer.from_pretrained(model_name).save_pretrained(output_dir_textual)
model.eval()
for param in model.parameters():
param.requires_grad_(False)
_export_text_encoder(model, textual_path, opset_version)
else:
print(f"Model {textual_path} already exists, skipping")
visual_path, _ = openclip_to_onnx(_MCLIP_TO_OPENCLIP[model_name], opset_version, output_dir_visual, cache=cache)
assert visual_path is not None, "Visual model export failed"
return visual_path, textual_path
def _export_text_encoder(model: Any, output_path: Path | str, opset_version: int) -> None:
import torch
from multilingual_clip.pt_multilingual_clip import MultilingualCLIP
output_path = Path(output_path)
def forward(self: MultilingualCLIP, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
embs = self.transformer(input_ids, attention_mask)[0]
embs = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None]
embs = self.LinearTransformation(embs)
return torch.nn.functional.normalize(embs, dim=-1)
# unfortunately need to monkeypatch for tracing to work here
# otherwise it hits the 2GiB protobuf serialization limit
MultilingualCLIP.forward = forward
args = (torch.ones(1, 77, dtype=torch.int32), torch.ones(1, 77, dtype=torch.int32))
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
model,
args,
output_path.as_posix(),
input_names=["input_ids", "attention_mask"],
output_names=["embedding"],
opset_version=opset_version,
# dynamic_axes={
# "input_ids": {0: "batch_size", 1: "sequence_length"},
# "attention_mask": {0: "batch_size", 1: "sequence_length"},
# },
)

View File

@ -1,151 +0,0 @@
import warnings
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import Any
from .util import get_model_path, save_config
@dataclass
class OpenCLIPModelConfig:
name: str
pretrained: str
@cached_property
def model_config(self) -> dict[str, Any]:
import open_clip
config: dict[str, Any] | None = open_clip.get_model_config(self.name)
if config is None:
raise ValueError(f"Unknown model {self.name}")
return config
@property
def image_size(self) -> int:
image_size: int = self.model_config["vision_cfg"]["image_size"]
return image_size
@property
def sequence_length(self) -> int:
context_length: int = self.model_config["text_cfg"].get("context_length", 77)
return context_length
def to_onnx(
model_cfg: OpenCLIPModelConfig,
opset_version: int,
output_dir_visual: Path | str | None = None,
output_dir_textual: Path | str | None = None,
cache: bool = True,
) -> tuple[Path | None, Path | None]:
visual_path = None
textual_path = None
if output_dir_visual is not None:
output_dir_visual = Path(output_dir_visual)
visual_path = get_model_path(output_dir_visual)
if output_dir_textual is not None:
output_dir_textual = Path(output_dir_textual)
textual_path = get_model_path(output_dir_textual)
if cache and ((textual_path is None or textual_path.exists()) and (visual_path is None or visual_path.exists())):
print(f"Models {textual_path} and {visual_path} already exist, skipping")
return visual_path, textual_path
import open_clip
import torch
from transformers import AutoTokenizer
torch.backends.mha.set_fastpath_enabled(False)
model = open_clip.create_model(
model_cfg.name,
pretrained=model_cfg.pretrained,
jit=False,
require_pretrained=True,
)
text_vision_cfg = open_clip.get_model_config(model_cfg.name)
model.eval()
for param in model.parameters():
param.requires_grad_(False)
if visual_path is not None and output_dir_visual is not None:
if not cache or not visual_path.exists():
save_config(
open_clip.get_model_preprocess_cfg(model),
output_dir_visual / "preprocess_cfg.json",
)
save_config(text_vision_cfg, output_dir_visual.parent / "config.json")
_export_image_encoder(model, model_cfg, visual_path, opset_version)
else:
print(f"Model {visual_path} already exists, skipping")
if textual_path is not None and output_dir_textual is not None:
if not cache or not textual_path.exists():
tokenizer_name = text_vision_cfg["text_cfg"].get("hf_tokenizer_name", "openai/clip-vit-base-patch32")
AutoTokenizer.from_pretrained(tokenizer_name).save_pretrained(output_dir_textual)
_export_text_encoder(model, model_cfg, textual_path, opset_version)
else:
print(f"Model {textual_path} already exists, skipping")
return visual_path, textual_path
def _export_image_encoder(
model: Any, model_cfg: OpenCLIPModelConfig, output_path: Path | str, opset_version: int
) -> None:
import torch
output_path = Path(output_path)
def encode_image(image: torch.Tensor) -> torch.Tensor:
output = model.encode_image(image, normalize=True)
assert isinstance(output, torch.Tensor)
return output
model.forward = encode_image
args = (torch.randn(1, 3, model_cfg.image_size, model_cfg.image_size),)
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
model,
args,
output_path.as_posix(),
input_names=["image"],
output_names=["embedding"],
opset_version=opset_version,
# dynamic_axes={"image": {0: "batch_size"}},
)
def _export_text_encoder(
model: Any, model_cfg: OpenCLIPModelConfig, output_path: Path | str, opset_version: int
) -> None:
import torch
output_path = Path(output_path)
def encode_text(text: torch.Tensor) -> torch.Tensor:
output = model.encode_text(text, normalize=True)
assert isinstance(output, torch.Tensor)
return output
model.forward = encode_text
args = (torch.ones(1, model_cfg.sequence_length, dtype=torch.int32),)
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
torch.onnx.export(
model,
args,
output_path.as_posix(),
input_names=["text"],
output_names=["embedding"],
opset_version=opset_version,
# dynamic_axes={"text": {0: "batch_size"}},
)

View File

@ -1,15 +0,0 @@
import json
from pathlib import Path
from typing import Any
def get_model_path(output_dir: Path | str) -> Path:
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
return output_dir / "model.onnx"
def save_config(config: Any, output_path: Path | str) -> None:
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
json.dump(config, output_path.open("w"))

View File

@ -1,96 +0,0 @@
from pathlib import Path
from .constants import RKNN_SOCS
def _export_platform(
model_dir: Path,
target_platform: str,
inputs: list[str] | None = None,
input_size_list: list[list[int]] | None = None,
fuse_matmul_softmax_matmul_to_sdpa: bool = True,
cache: bool = True,
) -> None:
from rknn.api import RKNN
input_path = model_dir / "model.onnx"
output_path = model_dir / "rknpu" / target_platform / "model.rknn"
if cache and output_path.exists():
print(f"Model {input_path} already exists at {output_path}, skipping")
return
print(f"Exporting model {input_path} to {output_path}")
rknn = RKNN(verbose=False)
rknn.config(
target_platform=target_platform,
disable_rules=["fuse_matmul_softmax_matmul_to_sdpa"] if not fuse_matmul_softmax_matmul_to_sdpa else [],
enable_flash_attention=False,
model_pruning=True,
)
ret = rknn.load_onnx(model=input_path.as_posix(), inputs=inputs, input_size_list=input_size_list)
if ret != 0:
raise RuntimeError("Load failed!")
ret = rknn.build(do_quantization=False)
if ret != 0:
raise RuntimeError("Build failed!")
output_path.parent.mkdir(parents=True, exist_ok=True)
ret = rknn.export_rknn(output_path.as_posix())
if ret != 0:
raise RuntimeError("Export rknn model failed!")
def _export_platforms(
model_dir: Path,
inputs: list[str] | None = None,
input_size_list: list[list[int]] | None = None,
cache: bool = True,
) -> None:
fuse_matmul_softmax_matmul_to_sdpa = True
for soc in RKNN_SOCS:
try:
_export_platform(
model_dir,
soc,
inputs=inputs,
input_size_list=input_size_list,
fuse_matmul_softmax_matmul_to_sdpa=fuse_matmul_softmax_matmul_to_sdpa,
cache=cache,
)
except Exception as e:
print(f"Failed to export model for {soc}: {e}")
if "inputs or 'outputs' must be set" in str(e):
print("Retrying without fuse_matmul_softmax_matmul_to_sdpa")
fuse_matmul_softmax_matmul_to_sdpa = False
_export_platform(
model_dir,
soc,
inputs=inputs,
input_size_list=input_size_list,
fuse_matmul_softmax_matmul_to_sdpa=fuse_matmul_softmax_matmul_to_sdpa,
cache=cache,
)
def export(model_dir: Path, cache: bool = True) -> None:
textual = model_dir / "textual"
visual = model_dir / "visual"
detection = model_dir / "detection"
recognition = model_dir / "recognition"
if textual.is_dir():
_export_platforms(textual, cache=cache)
if visual.is_dir():
_export_platforms(visual, cache=cache)
if detection.is_dir():
_export_platforms(detection, inputs=["input.1"], input_size_list=[[1, 3, 640, 640]], cache=cache)
if recognition.is_dir():
_export_platforms(recognition, inputs=["input.1"], input_size_list=[[1, 3, 112, 112]], cache=cache)

View File

@ -1,22 +0,0 @@
import json
from pathlib import Path
models_dir = Path("models")
model_to_embed_dim = {}
for model_dir in models_dir.iterdir():
if not model_dir.is_dir():
continue
config_path = model_dir / "config.json"
if not config_path.exists():
print(f"Skipping {model_dir.name} as it does not have a config.json")
continue
with open(config_path) as f:
config = json.load(f)
embed_dim = config.get("embed_dim")
if embed_dim is None:
print(f"Skipping {model_dir.name} as it does not have an embed_dim")
continue
print(f"{model_dir.name}: {embed_dim}")
model_to_embed_dim[model_dir.name] = {"dimSize": embed_dim}
print(json.dumps(model_to_embed_dim))

View File

@ -1,121 +0,0 @@
import polars as pl
def collapsed_table(language: str, df: pl.DataFrame) -> str:
with pl.Config(
tbl_formatting="ASCII_MARKDOWN",
tbl_hide_column_data_types=True,
tbl_hide_dataframe_shape=True,
fmt_str_lengths=100,
tbl_rows=1000,
tbl_width_chars=1000,
):
return f"<details>\n<summary>{language}</summary>\n{str(df)}\n</details>"
languages = {
"en": "English",
"ar": "Arabic",
"bn": "Bengali",
"zh": "Chinese (Simplified)",
"hr": "Croatian",
"quz": "Cusco Quechua",
"cs": "Czech",
"da": "Danish",
"nl": "Dutch",
"fil": "Filipino",
"fi": "Finnish",
"fr": "French",
"de": "German",
"el": "Greek",
"he": "Hebrew",
"hi": "Hindi",
"hu": "Hungarian",
"id": "Indonesian",
"it": "Italian",
"ja": "Japanese",
"ko": "Korean",
"mi": "Maori",
"no": "Norwegian",
"fa": "Persian",
"pl": "Polish",
"pt": "Portuguese",
"ro": "Romanian",
"ru": "Russian",
"es": "Spanish",
"sw": "Swahili",
"sv": "Swedish",
"te": "Telugu",
"th": "Thai",
"tr": "Turkish",
"uk": "Ukrainian",
"vi": "Vietnamese",
}
profile_df = pl.scan_ndjson("profiling/*.json").select("pretrained_model", "peak_rss", "exec_time_ms")
eval_df = pl.scan_ndjson("results/*.json").select("model", "pretrained", "language", "metrics")
eval_df = eval_df.with_columns(
model=pl.col("model")
.str.replace("xlm-roberta-base", "XLM-Roberta-Base")
.str.replace("xlm-roberta-large", "XLM-Roberta-Large")
)
eval_df = eval_df.with_columns(pretrained_model=pl.concat_str(pl.col("model"), pl.col("pretrained"), separator="__"))
eval_df = eval_df.drop("model", "pretrained")
eval_df = eval_df.join(profile_df, on="pretrained_model")
eval_df = eval_df.with_columns(
recall=(
pl.col("metrics").struct.field("image_retrieval_recall@1")
+ pl.col("metrics").struct.field("image_retrieval_recall@5")
+ pl.col("metrics").struct.field("image_retrieval_recall@10")
)
* (100 / 3)
)
pareto_front = eval_df.join_where(
eval_df.select("language", "peak_rss", "exec_time_ms", "recall").rename(
{
"language": "language_other",
"peak_rss": "peak_rss_other",
"exec_time_ms": "exec_time_ms_other",
"recall": "recall_other",
}
),
(pl.col("language") == pl.col("language_other"))
& (pl.col("peak_rss_other") <= pl.col("peak_rss"))
& (pl.col("exec_time_ms_other") <= pl.col("exec_time_ms"))
& (pl.col("recall_other") >= pl.col("recall"))
& (
(pl.col("peak_rss_other") < pl.col("peak_rss"))
| (pl.col("exec_time_ms_other") < pl.col("exec_time_ms"))
| (pl.col("recall_other") > pl.col("recall"))
),
)
eval_df = eval_df.join(pareto_front, on=["pretrained_model", "language"], how="left")
eval_df = eval_df.with_columns(is_pareto=pl.col("recall_other").is_null())
eval_df = (
eval_df.drop("peak_rss_other", "exec_time_ms_other", "recall_other", "language_other")
.unique(subset=["pretrained_model", "language"])
.collect()
)
eval_df.write_parquet("model_info.parquet")
eval_df = eval_df.drop("metrics")
eval_df = eval_df.filter(pl.col("recall") >= 20)
eval_df = eval_df.sort("recall", descending=True)
eval_df = eval_df.select(
pl.col("pretrained_model").alias("Model"),
(pl.col("peak_rss") / 1024).round().cast(pl.UInt32).alias("Memory (MiB)"),
pl.col("exec_time_ms").round(2).alias("Execution Time (ms)"),
pl.col("language").alias("Language"),
pl.col("recall").round(2).alias("Recall (%)"),
pl.when(pl.col("is_pareto")).then(pl.lit("")).otherwise(pl.lit("")).alias("Pareto Optimal"),
)
for language in languages:
lang_df = eval_df.filter(pl.col("Language") == language).drop("Language")
if lang_df.shape[0] == 0:
continue
print(collapsed_table(languages[language], lang_df))

View File

@ -1,171 +0,0 @@
import subprocess
from pathlib import Path
from exporters.constants import ModelSource
from immich_model_exporter import clean_name
from immich_model_exporter.exporters.constants import SOURCE_TO_TASK
mclip = [
"M-CLIP/LABSE-Vit-L-14",
"M-CLIP/XLM-Roberta-Large-Vit-B-16Plus",
"M-CLIP/XLM-Roberta-Large-Vit-B-32",
"M-CLIP/XLM-Roberta-Large-Vit-L-14",
]
openclip = [
"RN101__openai",
"RN101__yfcc15m",
"RN50__cc12m",
"RN50__openai",
"RN50__yfcc15m",
"RN50x16__openai",
"RN50x4__openai",
"RN50x64__openai",
"ViT-B-16-SigLIP-256__webli",
"ViT-B-16-SigLIP-384__webli",
"ViT-B-16-SigLIP-512__webli",
"ViT-B-16-SigLIP-i18n-256__webli",
"ViT-B-16-SigLIP2__webli",
"ViT-B-16-SigLIP__webli",
"ViT-B-16-plus-240__laion400m_e31",
"ViT-B-16-plus-240__laion400m_e32",
"ViT-B-16__laion400m_e31",
"ViT-B-16__laion400m_e32",
"ViT-B-16__openai",
"ViT-B-32-SigLIP2-256__webli",
"ViT-B-32__laion2b-s34b-b79k",
"ViT-B-32__laion2b_e16",
"ViT-B-32__laion400m_e31",
"ViT-B-32__laion400m_e32",
"ViT-B-32__openai",
"ViT-H-14-378-quickgelu__dfn5b",
"ViT-H-14-quickgelu__dfn5b",
"ViT-H-14__laion2b-s32b-b79k",
"ViT-L-14-336__openai",
"ViT-L-14-quickgelu__dfn2b",
"ViT-L-14__laion2b-s32b-b82k",
"ViT-L-14__laion400m_e31",
"ViT-L-14__laion400m_e32",
"ViT-L-14__openai",
"ViT-L-16-SigLIP-256__webli",
"ViT-L-16-SigLIP-384__webli",
"ViT-L-16-SigLIP2-256__webli",
"ViT-L-16-SigLIP2-384__webli",
"ViT-L-16-SigLIP2-512__webli",
"ViT-SO400M-14-SigLIP-384__webli",
"ViT-SO400M-14-SigLIP2-378__webli",
"ViT-SO400M-14-SigLIP2__webli",
"ViT-SO400M-16-SigLIP2-256__webli",
"ViT-SO400M-16-SigLIP2-384__webli",
"ViT-SO400M-16-SigLIP2-512__webli",
"ViT-gopt-16-SigLIP2-256__webli",
"ViT-gopt-16-SigLIP2-384__webli",
"nllb-clip-base-siglip__mrl",
"nllb-clip-base-siglip__v1",
"nllb-clip-large-siglip__mrl",
"nllb-clip-large-siglip__v1",
"xlm-roberta-base-ViT-B-32__laion5b_s13b_b90k",
"xlm-roberta-large-ViT-H-14__frozen_laion5b_s13b_b90k",
]
insightface = [
"antelopev2",
"buffalo_l",
"buffalo_m",
"buffalo_s",
]
def export_models(models: list[str], source: ModelSource) -> None:
profiling_dir = Path("profiling")
profiling_dir.mkdir(exist_ok=True)
for model in models:
try:
model_dir = f"models/{clean_name(model)}"
task = SOURCE_TO_TASK[source]
print(f"Processing model {model}")
subprocess.check_call(["python", "-m", "immich_model_exporter", "export", model, source])
subprocess.check_call(
[
"python",
"-m",
"immich_model_exporter",
"profile",
model_dir,
task,
"--output_path",
profiling_dir / f"{model}.json",
]
)
subprocess.check_call(["python", "-m", "immich_model_exporter", "upload", model_dir])
except Exception as e:
print(f"Failed to export model {model}: {e}")
if __name__ == "__main__":
export_models(mclip, ModelSource.MCLIP)
export_models(openclip, ModelSource.OPENCLIP)
export_models(insightface, ModelSource.INSIGHTFACE)
Path("results").mkdir(exist_ok=True)
subprocess.check_call(
[
"python",
"clip_benchmark",
"eval",
"--pretrained_model",
*[name.replace("__", ",") for name in openclip],
"--task",
"zeroshot_retrieval",
"--dataset",
"crossmodal3600",
"--batch_size",
"64",
"--language",
"ar",
"bn",
"cs",
"da",
"de",
"el",
"en",
"es",
"fa",
"fi",
"fil",
"fr",
"he",
"hi",
"hr",
"hu",
"id",
"it",
"ja",
"ko",
"mi",
"nl",
"no",
"pl",
"pt",
"quz",
"ro",
"ru",
"sv",
"sw",
"te",
"th",
"tr",
"uk",
"vi",
"zh",
"--recall_k",
"1",
"5",
"10",
"--no_amp",
"--output",
"results/{dataset}_{language}_{model}_{pretrained}.json",
]
)

View File

@ -1,60 +0,0 @@
[project]
name = "immich_model_exporter"
version = "0.1.0"
description = "Add your description here"
readme = "README.md"
requires-python = ">=3.10, <4.0"
dependencies = [
"huggingface-hub>=0.29.3",
"multilingual-clip>=1.0.10",
"onnx>=1.14.1",
"onnxruntime>=1.16.0",
"open-clip-torch>=2.31.0",
"typer>=0.15.2",
"rknn-toolkit2>=2.3.0",
"transformers>=4.49.0",
"tenacity>=9.0.0",
"clip-benchmark>=1.6.1",
"polars>=1.25.2",
]
[dependency-groups]
dev = ["black>=23.3.0", "mypy>=1.3.0", "ruff>=0.0.272"]
[tool.uv]
override-dependencies = [
"onnx>=1.16.0,<2",
"onnxruntime>=1.18.2,<2",
"torch>=2.4",
"torchvision>=0.21",
]
[tool.hatch.build.targets.sdist]
include = ["immich_model_exporter"]
[tool.hatch.build.targets.wheel]
include = ["immich_model_exporter"]
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[tool.mypy]
python_version = "3.12"
follow_imports = "silent"
warn_redundant_casts = true
disallow_any_generics = true
check_untyped_defs = true
disallow_untyped_defs = true
ignore_missing_imports = true
[tool.ruff]
line-length = 120
target-version = "py312"
[tool.ruff.lint]
select = ["E", "F", "I"]
[tool.black]
line-length = 120
target-version = ['py312']

File diff suppressed because it is too large Load Diff