from __future__ import annotations from pathlib import Path from typing import Any, List import numpy as np from numpy.typing import NDArray from rknnlite.api import RKNNLite # Importing RKNN API from app.models.constants import SUPPORTED_PROVIDERS from app.schemas import SessionNode from ..config import log, settings class RknnSession: def __init__(self, model_path: Path | str): self.model_path = Path(model_path) self.rknn = RKNNLite() # Initialize RKNN object # self.rknn.config(target_platform='rk3566') # Load the RKNN model log.info(f"Loading RKNN model from {self.model_path}") self._load_model() def _load_model(self) -> None: # ret = self.rknn.load_onnx(self.model_path.as_posix()) print('--> Load RKNN model') ret = self.rknn.load_rknn(self.model_path.as_posix()) if ret != 0: raise RuntimeError("Failed to load RKNN model") # print('--> Building model') # ret = self.rknn.build(do_quantization=False) if ret != 0: print('Build model failed!') exit(ret) ret = self.rknn.init_runtime() if ret != 0: raise RuntimeError("Failed to initialize RKNN runtime") def get_inputs(self) -> List[SessionNode]: input_attrs = self.rknn.query_inputs() return input_attrs # RKNN does not provide direct SessionNode equivalent def get_outputs(self) -> List[SessionNode]: output_attrs = self.rknn.query_outputs() return output_attrs def run( self, output_names: list[str] | None, input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]], run_options: Any = None, ) -> List[NDArray[np.float32]]: inputs = [v for v in input_feed.values()] # Run inference log.debug(f"Running inference on RKNN model") outputs = self.rknn.inference(inputs=inputs) return outputs def release(self) -> None: log.info("Releasing RKNN resources") self.rknn.release() # Example Usage: # session = RknnSession(model_path="path/to/model.rknn") # outputs = session.run(input_feed={"input_name": input_data}) # session.release()