import { Injectable } from '@nestjs/common'; import { SystemConfig } from 'src/config'; import { JOBS_ASSET_PAGINATION_SIZE } from 'src/constants'; import { OnEvent, OnJob } from 'src/decorators'; import { AssetFileType, DatabaseLock, ImmichWorker, JobName, JobStatus, QueueName } from 'src/enum'; import { WithoutProperty } from 'src/repositories/asset.repository'; import { ArgOf } from 'src/repositories/event.repository'; import { BaseService } from 'src/services/base.service'; import { JobOf } from 'src/types'; import { getAssetFile } from 'src/utils/asset.util'; import { getCLIPModelInfo, isSmartSearchEnabled } from 'src/utils/misc'; import { usePagination } from 'src/utils/pagination'; @Injectable() export class SmartInfoService extends BaseService { @OnEvent({ name: 'config.init', workers: [ImmichWorker.MICROSERVICES] }) async onConfigInit({ newConfig }: ArgOf<'config.init'>) { await this.init(newConfig); } @OnEvent({ name: 'config.update', workers: [ImmichWorker.MICROSERVICES], server: true }) async onConfigUpdate({ oldConfig, newConfig }: ArgOf<'config.update'>) { await this.init(newConfig, oldConfig); } @OnEvent({ name: 'config.validate' }) onConfigValidate({ newConfig }: ArgOf<'config.validate'>) { try { getCLIPModelInfo(newConfig.machineLearning.clip.modelName); } catch { throw new Error( `Unknown CLIP model: ${newConfig.machineLearning.clip.modelName}. Please check the model name for typos and confirm this is a supported model.`, ); } } private async init(newConfig: SystemConfig, oldConfig?: SystemConfig) { if (!isSmartSearchEnabled(newConfig.machineLearning)) { return; } await this.databaseRepository.withLock(DatabaseLock.CLIPDimSize, async () => { const { dimSize } = getCLIPModelInfo(newConfig.machineLearning.clip.modelName); const dbDimSize = await this.searchRepository.getDimensionSize(); this.logger.verbose(`Current database CLIP dimension size is ${dbDimSize}`); const modelChange = oldConfig && oldConfig.machineLearning.clip.modelName !== newConfig.machineLearning.clip.modelName; const dimSizeChange = dbDimSize !== dimSize; if (!modelChange && !dimSizeChange) { return; } const { isPaused } = await this.jobRepository.getQueueStatus(QueueName.SMART_SEARCH); if (!isPaused) { await this.jobRepository.pause(QueueName.SMART_SEARCH); } await this.jobRepository.waitForQueueCompletion(QueueName.SMART_SEARCH); if (dimSizeChange) { this.logger.log( `Dimension size of model ${newConfig.machineLearning.clip.modelName} is ${dimSize}, but database expects ${dbDimSize}.`, ); this.logger.log(`Updating database CLIP dimension size to ${dimSize}.`); await this.searchRepository.setDimensionSize(dimSize); this.logger.log(`Successfully updated database CLIP dimension size from ${dbDimSize} to ${dimSize}.`); } else { await this.searchRepository.deleteAllSearchEmbeddings(); } if (!isPaused) { await this.jobRepository.resume(QueueName.SMART_SEARCH); } }); } @OnJob({ name: JobName.QUEUE_SMART_SEARCH, queue: QueueName.SMART_SEARCH }) async handleQueueEncodeClip({ force }: JobOf): Promise { const { machineLearning } = await this.getConfig({ withCache: false }); if (!isSmartSearchEnabled(machineLearning)) { return JobStatus.SKIPPED; } if (force) { await this.searchRepository.deleteAllSearchEmbeddings(); } const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => { return force ? this.assetRepository.getAll(pagination, { isVisible: true }) : this.assetRepository.getWithout(pagination, WithoutProperty.SMART_SEARCH); }); for await (const assets of assetPagination) { await this.jobRepository.queueAll( assets.map((asset) => ({ name: JobName.SMART_SEARCH, data: { id: asset.id } })), ); } return JobStatus.SUCCESS; } @OnJob({ name: JobName.SMART_SEARCH, queue: QueueName.SMART_SEARCH }) async handleEncodeClip({ id }: JobOf): Promise { const { machineLearning } = await this.getConfig({ withCache: true }); if (!isSmartSearchEnabled(machineLearning)) { return JobStatus.SKIPPED; } const [asset] = await this.assetRepository.getByIds([id], { files: true }); if (!asset) { return JobStatus.FAILED; } if (!asset.isVisible) { return JobStatus.SKIPPED; } const previewFile = getAssetFile(asset.files, AssetFileType.PREVIEW); if (!previewFile) { return JobStatus.FAILED; } const embedding = await this.machineLearningRepository.encodeImage( machineLearning.urls, previewFile.path, machineLearning.clip, ); if (this.databaseRepository.isBusy(DatabaseLock.CLIPDimSize)) { this.logger.verbose(`Waiting for CLIP dimension size to be updated`); await this.databaseRepository.wait(DatabaseLock.CLIPDimSize); } await this.searchRepository.upsert(asset.id, embedding); return JobStatus.SUCCESS; } }