Mert 84c35e35d6
chore(ml): installable package (#17153)
* app -> immich_ml

* fix test ci

* omit file name

* add new line

* add new line
2025-03-27 19:49:09 +00:00

41 lines
1.7 KiB
Python

from typing import Any
from immich_ml.models.base import InferenceModel
from immich_ml.models.clip.textual import MClipTextualEncoder, OpenClipTextualEncoder
from immich_ml.models.clip.visual import OpenClipVisualEncoder
from immich_ml.schemas import ModelSource, ModelTask, ModelType
from .constants import get_model_source
from .facial_recognition.detection import FaceDetector
from .facial_recognition.recognition import FaceRecognizer
def get_model_class(model_name: str, model_type: ModelType, model_task: ModelTask) -> type[InferenceModel]:
source = get_model_source(model_name)
match source, model_type, model_task:
case ModelSource.OPENCLIP | ModelSource.MCLIP, ModelType.VISUAL, ModelTask.SEARCH:
return OpenClipVisualEncoder
case ModelSource.OPENCLIP, ModelType.TEXTUAL, ModelTask.SEARCH:
return OpenClipTextualEncoder
case ModelSource.MCLIP, ModelType.TEXTUAL, ModelTask.SEARCH:
return MClipTextualEncoder
case ModelSource.INSIGHTFACE, ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION:
return FaceDetector
case ModelSource.INSIGHTFACE, ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION:
return FaceRecognizer
case _:
raise ValueError(f"Unknown model combination: {source}, {model_type}, {model_task}")
def from_model_type(model_name: str, model_type: ModelType, model_task: ModelTask, **kwargs: Any) -> InferenceModel:
return get_model_class(model_name, model_type, model_task)(model_name, **kwargs)
def get_model_deps(model_name: str, model_type: ModelType, model_task: ModelTask) -> list[tuple[ModelType, ModelTask]]:
return get_model_class(model_name, model_type, model_task).depends