mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-30 18:22:37 -04:00 
			
		
		
		
	* feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
		
			
				
	
	
		
			87 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| from PIL import Image
 | |
| from rapidocr.ch_ppocr_det import TextDetector as RapidTextDetector
 | |
| from rapidocr.inference_engine.base import FileInfo, InferSession
 | |
| from rapidocr.utils import DownloadFile, DownloadFileInput
 | |
| from rapidocr.utils.typings import EngineType, LangDet, OCRVersion, TaskType
 | |
| from rapidocr.utils.typings import ModelType as RapidModelType
 | |
| 
 | |
| from immich_ml.config import log
 | |
| from immich_ml.models.base import InferenceModel
 | |
| from immich_ml.models.transforms import decode_cv2
 | |
| from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
 | |
| from immich_ml.sessions.ort import OrtSession
 | |
| 
 | |
| from .schemas import OcrOptions, TextDetectionOutput
 | |
| 
 | |
| 
 | |
| class TextDetector(InferenceModel):
 | |
|     depends = []
 | |
|     identity = (ModelType.DETECTION, ModelTask.OCR)
 | |
| 
 | |
|     def __init__(self, model_name: str, **model_kwargs: Any) -> None:
 | |
|         super().__init__(model_name, **model_kwargs, model_format=ModelFormat.ONNX)
 | |
|         self.max_resolution = 736
 | |
|         self.min_score = 0.5
 | |
|         self.score_mode = "fast"
 | |
|         self._empty: TextDetectionOutput = {
 | |
|             "image": np.empty(0, dtype=np.float32),
 | |
|             "boxes": np.empty(0, dtype=np.float32),
 | |
|             "scores": np.empty(0, dtype=np.float32),
 | |
|         }
 | |
| 
 | |
|     def _download(self) -> None:
 | |
|         model_info = InferSession.get_model_url(
 | |
|             FileInfo(
 | |
|                 engine_type=EngineType.ONNXRUNTIME,
 | |
|                 ocr_version=OCRVersion.PPOCRV5,
 | |
|                 task_type=TaskType.DET,
 | |
|                 lang_type=LangDet.CH,
 | |
|                 model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
 | |
|             )
 | |
|         )
 | |
|         download_params = DownloadFileInput(
 | |
|             file_url=model_info["model_dir"],
 | |
|             sha256=model_info["SHA256"],
 | |
|             save_path=self.model_path,
 | |
|             logger=log,
 | |
|         )
 | |
|         DownloadFile.run(download_params)
 | |
| 
 | |
|     def _load(self) -> ModelSession:
 | |
|         # TODO: support other runtime sessions
 | |
|         session = OrtSession(self.model_path)
 | |
|         self.model = RapidTextDetector(
 | |
|             OcrOptions(
 | |
|                 session=session.session,
 | |
|                 limit_side_len=self.max_resolution,
 | |
|                 limit_type="min",
 | |
|                 box_thresh=self.min_score,
 | |
|                 score_mode=self.score_mode,
 | |
|             )
 | |
|         )
 | |
|         return session
 | |
| 
 | |
|     def _predict(self, inputs: bytes | Image.Image) -> TextDetectionOutput:
 | |
|         results = self.model(decode_cv2(inputs))
 | |
|         if results.boxes is None or results.scores is None or results.img is None:
 | |
|             return self._empty
 | |
|         return {
 | |
|             "image": results.img,
 | |
|             "boxes": np.array(results.boxes, dtype=np.float32),
 | |
|             "scores": np.array(results.scores, dtype=np.float32),
 | |
|         }
 | |
| 
 | |
|     def configure(self, **kwargs: Any) -> None:
 | |
|         if (max_resolution := kwargs.get("maxResolution")) is not None:
 | |
|             self.max_resolution = max_resolution
 | |
|             self.model.limit_side_len = max_resolution
 | |
|         if (min_score := kwargs.get("minScore")) is not None:
 | |
|             self.min_score = min_score
 | |
|             self.model.postprocess_op.box_thresh = min_score
 | |
|         if (score_mode := kwargs.get("scoreMode")) is not None:
 | |
|             self.score_mode = score_mode
 | |
|             self.model.postprocess_op.score_mode = score_mode
 |