Kang 02b29046b3
feat: ocr (#18836)
* feat: add OCR functionality and related configurations

* chore: update labeler configuration for machine learning files

* feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features

* chore: update Dockerfile to include ccache for improved build performance

* feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure

* refactor(ocr): remove OCR_CLEANUP job from enum and type definitions

* refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure

* refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files

* feat: enhance OCR configuration and functionality

- Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score.
- Refactored PaddleOCRecognizer to utilize new scoring parameters.
- Introduced new database tables for asset OCR data and search functionality.
- Modified related services and repositories to support the new OCR features.
- Updated translations for improved clarity in settings UI.

* sql changes

* use rapidocr

* change dto

* update web

* update lock

* update api

* store positions as normalized floats

* match column order in db

* update admin ui settings descriptions

fix max resolution key

set min threshold to 0.1

fix bind

* apply config correctly, adjust defaults

* unnecessary model type

* unnecessary sources

* fix(ocr): switch RapidOCR lang type from LangDet to LangRec

* fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR

* fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent

* fix(ocr): add OCR search fields

* fix: Add OCR database migration and update ML prediction logic.

* trigrams are already case insensitive

* add tests

* format

* update migrations

* wrong uuid function

* linting

* maybe fix medium tests

* formatting

* fix weblate check

* openapi

* sql

* minor fixes

* maybe fix medium tests part 2

* passing medium tests

* format web

* readd sql

* format dart

* disabled in e2e

* chore: translation ordering

---------

Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2025-10-27 14:09:55 +00:00

118 lines
4.8 KiB
Python

from typing import Any
import cv2
import numpy as np
from numpy.typing import NDArray
from PIL.Image import Image
from rapidocr.ch_ppocr_rec import TextRecInput
from rapidocr.ch_ppocr_rec import TextRecognizer as RapidTextRecognizer
from rapidocr.inference_engine.base import FileInfo, InferSession
from rapidocr.utils import DownloadFile, DownloadFileInput
from rapidocr.utils.typings import EngineType, LangRec, OCRVersion, TaskType
from rapidocr.utils.typings import ModelType as RapidModelType
from immich_ml.config import log, settings
from immich_ml.models.base import InferenceModel
from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
from immich_ml.sessions.ort import OrtSession
from .schemas import OcrOptions, TextDetectionOutput, TextRecognitionOutput
class TextRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.OCR)]
identity = (ModelType.RECOGNITION, ModelTask.OCR)
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
self.min_score = model_kwargs.get("minScore", 0.9)
self._empty: TextRecognitionOutput = {
"box": np.empty(0, dtype=np.float32),
"boxScore": np.empty(0, dtype=np.float32),
"text": [],
"textScore": np.empty(0, dtype=np.float32),
}
super().__init__(model_name, **model_kwargs, model_format=ModelFormat.ONNX)
def _download(self) -> None:
model_info = InferSession.get_model_url(
FileInfo(
engine_type=EngineType.ONNXRUNTIME,
ocr_version=OCRVersion.PPOCRV5,
task_type=TaskType.REC,
lang_type=LangRec.CH,
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
)
)
download_params = DownloadFileInput(
file_url=model_info["model_dir"],
sha256=model_info["SHA256"],
save_path=self.model_path,
logger=log,
)
DownloadFile.run(download_params)
def _load(self) -> ModelSession:
# TODO: support other runtimes
session = OrtSession(self.model_path)
self.model = RapidTextRecognizer(
OcrOptions(
session=session.session,
rec_batch_num=settings.max_batch_size.text_recognition if settings.max_batch_size is not None else 6,
rec_img_shape=(3, 48, 320),
)
)
return session
def _predict(self, _: Image, texts: TextDetectionOutput) -> TextRecognitionOutput:
boxes, img, box_scores = texts["boxes"], texts["image"], texts["scores"]
if boxes.shape[0] == 0:
return self._empty
rec = self.model(TextRecInput(img=self.get_crop_img_list(img, boxes)))
if rec.txts is None:
return self._empty
height, width = img.shape[0:2]
boxes[:, :, 0] /= width
boxes[:, :, 1] /= height
text_scores = np.array(rec.scores)
valid_text_score_idx = text_scores > self.min_score
valid_score_idx_list = valid_text_score_idx.tolist()
return {
"box": boxes.reshape(-1, 8)[valid_text_score_idx].reshape(-1),
"text": [rec.txts[i] for i in range(len(rec.txts)) if valid_score_idx_list[i]],
"boxScore": box_scores[valid_text_score_idx],
"textScore": text_scores[valid_text_score_idx],
}
def get_crop_img_list(self, img: NDArray[np.float32], boxes: NDArray[np.float32]) -> list[NDArray[np.float32]]:
img_crop_width = np.maximum(
np.linalg.norm(boxes[:, 1] - boxes[:, 0], axis=1), np.linalg.norm(boxes[:, 2] - boxes[:, 3], axis=1)
).astype(np.int32)
img_crop_height = np.maximum(
np.linalg.norm(boxes[:, 0] - boxes[:, 3], axis=1), np.linalg.norm(boxes[:, 1] - boxes[:, 2], axis=1)
).astype(np.int32)
pts_std = np.zeros((img_crop_width.shape[0], 4, 2), dtype=np.float32)
pts_std[:, 1:3, 0] = img_crop_width[:, None]
pts_std[:, 2:4, 1] = img_crop_height[:, None]
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1).tolist()
imgs: list[NDArray[np.float32]] = []
for box, pts_std, dst_size in zip(list(boxes), list(pts_std), img_crop_sizes):
M = cv2.getPerspectiveTransform(box, pts_std)
dst_img: NDArray[np.float32] = cv2.warpPerspective(
img,
M,
dst_size,
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC,
) # type: ignore
dst_height, dst_width = dst_img.shape[0:2]
if dst_height * 1.0 / dst_width >= 1.5:
dst_img = np.rot90(dst_img)
imgs.append(dst_img)
return imgs
def configure(self, **kwargs: Any) -> None:
self.min_score = kwargs.get("minScore", self.min_score)