mirror of
https://github.com/immich-app/immich.git
synced 2025-11-01 11:07:11 -04:00
* feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
244 lines
7.6 KiB
TypeScript
244 lines
7.6 KiB
TypeScript
import { Kysely } from 'kysely';
|
|
import { AssetFileType, JobStatus } from 'src/enum';
|
|
import { AssetJobRepository } from 'src/repositories/asset-job.repository';
|
|
import { AssetRepository } from 'src/repositories/asset.repository';
|
|
import { ConfigRepository } from 'src/repositories/config.repository';
|
|
import { JobRepository } from 'src/repositories/job.repository';
|
|
import { LoggingRepository } from 'src/repositories/logging.repository';
|
|
import { MachineLearningRepository } from 'src/repositories/machine-learning.repository';
|
|
import { OcrRepository } from 'src/repositories/ocr.repository';
|
|
import { SystemMetadataRepository } from 'src/repositories/system-metadata.repository';
|
|
import { DB } from 'src/schema';
|
|
import { OcrService } from 'src/services/ocr.service';
|
|
import { newMediumService } from 'test/medium.factory';
|
|
import { getKyselyDB } from 'test/utils';
|
|
|
|
let defaultDatabase: Kysely<DB>;
|
|
|
|
const setup = (db?: Kysely<DB>) => {
|
|
return newMediumService(OcrService, {
|
|
database: db || defaultDatabase,
|
|
real: [AssetRepository, AssetJobRepository, ConfigRepository, OcrRepository, SystemMetadataRepository],
|
|
mock: [JobRepository, LoggingRepository, MachineLearningRepository],
|
|
});
|
|
};
|
|
|
|
beforeAll(async () => {
|
|
defaultDatabase = await getKyselyDB();
|
|
});
|
|
|
|
describe(OcrService.name, () => {
|
|
it('should work', () => {
|
|
const { sut } = setup();
|
|
expect(sut).toBeDefined();
|
|
});
|
|
|
|
it('should parse asset', async () => {
|
|
const { sut, ctx } = setup();
|
|
const { user } = await ctx.newUser();
|
|
const { asset } = await ctx.newAsset({ ownerId: user.id });
|
|
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
|
|
|
|
const machineLearningMock = ctx.getMock(MachineLearningRepository);
|
|
machineLearningMock.ocr.mockResolvedValue({
|
|
box: [10, 10, 50, 10, 50, 50, 10, 50],
|
|
boxScore: [0.99],
|
|
text: ['Test OCR'],
|
|
textScore: [0.95],
|
|
});
|
|
|
|
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
|
|
|
|
const ocrRepository = ctx.get(OcrRepository);
|
|
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([
|
|
{
|
|
assetId: asset.id,
|
|
boxScore: 0.99,
|
|
id: expect.any(String),
|
|
text: 'Test OCR',
|
|
textScore: 0.95,
|
|
x1: 10,
|
|
y1: 10,
|
|
x2: 50,
|
|
y2: 10,
|
|
x3: 50,
|
|
y3: 50,
|
|
x4: 10,
|
|
y4: 50,
|
|
},
|
|
]);
|
|
await expect(
|
|
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
|
|
).resolves.toEqual({
|
|
assetId: asset.id,
|
|
text: 'Test OCR',
|
|
});
|
|
await expect(
|
|
ctx.database
|
|
.selectFrom('asset_job_status')
|
|
.select('asset_job_status.ocrAt')
|
|
.where('assetId', '=', asset.id)
|
|
.executeTakeFirst(),
|
|
).resolves.toEqual({ ocrAt: expect.any(Date) });
|
|
});
|
|
|
|
it('should handle multiple boxes', async () => {
|
|
const { sut, ctx } = setup();
|
|
const { user } = await ctx.newUser();
|
|
const { asset } = await ctx.newAsset({ ownerId: user.id });
|
|
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
|
|
|
|
const machineLearningMock = ctx.getMock(MachineLearningRepository);
|
|
machineLearningMock.ocr.mockResolvedValue({
|
|
box: Array.from({ length: 8 * 5 }, (_, i) => i),
|
|
boxScore: [0.7, 0.67, 0.65, 0.62, 0.6],
|
|
text: ['One', 'Two', 'Three', 'Four', 'Five'],
|
|
textScore: [0.9, 0.89, 0.88, 0.87, 0.86],
|
|
});
|
|
|
|
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
|
|
|
|
const ocrRepository = ctx.get(OcrRepository);
|
|
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([
|
|
{
|
|
assetId: asset.id,
|
|
boxScore: 0.7,
|
|
id: expect.any(String),
|
|
text: 'One',
|
|
textScore: 0.9,
|
|
x1: 0,
|
|
y1: 1,
|
|
x2: 2,
|
|
y2: 3,
|
|
x3: 4,
|
|
y3: 5,
|
|
x4: 6,
|
|
y4: 7,
|
|
},
|
|
{
|
|
assetId: asset.id,
|
|
boxScore: 0.67,
|
|
id: expect.any(String),
|
|
text: 'Two',
|
|
textScore: 0.89,
|
|
x1: 8,
|
|
y1: 9,
|
|
x2: 10,
|
|
y2: 11,
|
|
x3: 12,
|
|
y3: 13,
|
|
x4: 14,
|
|
y4: 15,
|
|
},
|
|
{
|
|
assetId: asset.id,
|
|
boxScore: 0.65,
|
|
id: expect.any(String),
|
|
text: 'Three',
|
|
textScore: 0.88,
|
|
x1: 16,
|
|
y1: 17,
|
|
x2: 18,
|
|
y2: 19,
|
|
x3: 20,
|
|
y3: 21,
|
|
x4: 22,
|
|
y4: 23,
|
|
},
|
|
{
|
|
assetId: asset.id,
|
|
boxScore: 0.62,
|
|
id: expect.any(String),
|
|
text: 'Four',
|
|
textScore: 0.87,
|
|
x1: 24,
|
|
y1: 25,
|
|
x2: 26,
|
|
y2: 27,
|
|
x3: 28,
|
|
y3: 29,
|
|
x4: 30,
|
|
y4: 31,
|
|
},
|
|
{
|
|
assetId: asset.id,
|
|
boxScore: 0.6,
|
|
id: expect.any(String),
|
|
text: 'Five',
|
|
textScore: 0.86,
|
|
x1: 32,
|
|
y1: 33,
|
|
x2: 34,
|
|
y2: 35,
|
|
x3: 36,
|
|
y3: 37,
|
|
x4: 38,
|
|
y4: 39,
|
|
},
|
|
]);
|
|
await expect(
|
|
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
|
|
).resolves.toEqual({
|
|
assetId: asset.id,
|
|
text: 'One Two Three Four Five',
|
|
});
|
|
await expect(
|
|
ctx.database
|
|
.selectFrom('asset_job_status')
|
|
.select('asset_job_status.ocrAt')
|
|
.where('assetId', '=', asset.id)
|
|
.executeTakeFirst(),
|
|
).resolves.toEqual({ ocrAt: expect.any(Date) });
|
|
});
|
|
|
|
it('should handle no boxes', async () => {
|
|
const { sut, ctx } = setup();
|
|
const { user } = await ctx.newUser();
|
|
const { asset } = await ctx.newAsset({ ownerId: user.id });
|
|
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
|
|
|
|
const machineLearningMock = ctx.getMock(MachineLearningRepository);
|
|
machineLearningMock.ocr.mockResolvedValue({ box: [], boxScore: [], text: [], textScore: [] });
|
|
|
|
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
|
|
|
|
const ocrRepository = ctx.get(OcrRepository);
|
|
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([]);
|
|
await expect(
|
|
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
|
|
).resolves.toBeUndefined();
|
|
await expect(
|
|
ctx.database
|
|
.selectFrom('asset_job_status')
|
|
.select('asset_job_status.ocrAt')
|
|
.where('assetId', '=', asset.id)
|
|
.executeTakeFirst(),
|
|
).resolves.toEqual({ ocrAt: expect.any(Date) });
|
|
});
|
|
|
|
it('should update existing results', async () => {
|
|
const { sut, ctx } = setup();
|
|
const { user } = await ctx.newUser();
|
|
const { asset } = await ctx.newAsset({ ownerId: user.id });
|
|
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
|
|
|
|
const machineLearningMock = ctx.getMock(MachineLearningRepository);
|
|
machineLearningMock.ocr.mockResolvedValue({
|
|
box: [10, 10, 50, 10, 50, 50, 10, 50],
|
|
boxScore: [0.99],
|
|
text: ['Test OCR'],
|
|
textScore: [0.95],
|
|
});
|
|
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
|
|
|
|
machineLearningMock.ocr.mockResolvedValue({ box: [], boxScore: [], text: [], textScore: [] });
|
|
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
|
|
|
|
const ocrRepository = ctx.get(OcrRepository);
|
|
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([]);
|
|
await expect(
|
|
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
|
|
).resolves.toBeUndefined();
|
|
});
|
|
});
|