immich/server/test/medium/specs/services/ocr.service.spec.ts
Kang 02b29046b3
feat: ocr (#18836)
* feat: add OCR functionality and related configurations

* chore: update labeler configuration for machine learning files

* feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features

* chore: update Dockerfile to include ccache for improved build performance

* feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure

* refactor(ocr): remove OCR_CLEANUP job from enum and type definitions

* refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure

* refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files

* feat: enhance OCR configuration and functionality

- Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score.
- Refactored PaddleOCRecognizer to utilize new scoring parameters.
- Introduced new database tables for asset OCR data and search functionality.
- Modified related services and repositories to support the new OCR features.
- Updated translations for improved clarity in settings UI.

* sql changes

* use rapidocr

* change dto

* update web

* update lock

* update api

* store positions as normalized floats

* match column order in db

* update admin ui settings descriptions

fix max resolution key

set min threshold to 0.1

fix bind

* apply config correctly, adjust defaults

* unnecessary model type

* unnecessary sources

* fix(ocr): switch RapidOCR lang type from LangDet to LangRec

* fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR

* fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent

* fix(ocr): add OCR search fields

* fix: Add OCR database migration and update ML prediction logic.

* trigrams are already case insensitive

* add tests

* format

* update migrations

* wrong uuid function

* linting

* maybe fix medium tests

* formatting

* fix weblate check

* openapi

* sql

* minor fixes

* maybe fix medium tests part 2

* passing medium tests

* format web

* readd sql

* format dart

* disabled in e2e

* chore: translation ordering

---------

Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2025-10-27 14:09:55 +00:00

244 lines
7.6 KiB
TypeScript

import { Kysely } from 'kysely';
import { AssetFileType, JobStatus } from 'src/enum';
import { AssetJobRepository } from 'src/repositories/asset-job.repository';
import { AssetRepository } from 'src/repositories/asset.repository';
import { ConfigRepository } from 'src/repositories/config.repository';
import { JobRepository } from 'src/repositories/job.repository';
import { LoggingRepository } from 'src/repositories/logging.repository';
import { MachineLearningRepository } from 'src/repositories/machine-learning.repository';
import { OcrRepository } from 'src/repositories/ocr.repository';
import { SystemMetadataRepository } from 'src/repositories/system-metadata.repository';
import { DB } from 'src/schema';
import { OcrService } from 'src/services/ocr.service';
import { newMediumService } from 'test/medium.factory';
import { getKyselyDB } from 'test/utils';
let defaultDatabase: Kysely<DB>;
const setup = (db?: Kysely<DB>) => {
return newMediumService(OcrService, {
database: db || defaultDatabase,
real: [AssetRepository, AssetJobRepository, ConfigRepository, OcrRepository, SystemMetadataRepository],
mock: [JobRepository, LoggingRepository, MachineLearningRepository],
});
};
beforeAll(async () => {
defaultDatabase = await getKyselyDB();
});
describe(OcrService.name, () => {
it('should work', () => {
const { sut } = setup();
expect(sut).toBeDefined();
});
it('should parse asset', async () => {
const { sut, ctx } = setup();
const { user } = await ctx.newUser();
const { asset } = await ctx.newAsset({ ownerId: user.id });
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
const machineLearningMock = ctx.getMock(MachineLearningRepository);
machineLearningMock.ocr.mockResolvedValue({
box: [10, 10, 50, 10, 50, 50, 10, 50],
boxScore: [0.99],
text: ['Test OCR'],
textScore: [0.95],
});
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
const ocrRepository = ctx.get(OcrRepository);
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([
{
assetId: asset.id,
boxScore: 0.99,
id: expect.any(String),
text: 'Test OCR',
textScore: 0.95,
x1: 10,
y1: 10,
x2: 50,
y2: 10,
x3: 50,
y3: 50,
x4: 10,
y4: 50,
},
]);
await expect(
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
).resolves.toEqual({
assetId: asset.id,
text: 'Test OCR',
});
await expect(
ctx.database
.selectFrom('asset_job_status')
.select('asset_job_status.ocrAt')
.where('assetId', '=', asset.id)
.executeTakeFirst(),
).resolves.toEqual({ ocrAt: expect.any(Date) });
});
it('should handle multiple boxes', async () => {
const { sut, ctx } = setup();
const { user } = await ctx.newUser();
const { asset } = await ctx.newAsset({ ownerId: user.id });
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
const machineLearningMock = ctx.getMock(MachineLearningRepository);
machineLearningMock.ocr.mockResolvedValue({
box: Array.from({ length: 8 * 5 }, (_, i) => i),
boxScore: [0.7, 0.67, 0.65, 0.62, 0.6],
text: ['One', 'Two', 'Three', 'Four', 'Five'],
textScore: [0.9, 0.89, 0.88, 0.87, 0.86],
});
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
const ocrRepository = ctx.get(OcrRepository);
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([
{
assetId: asset.id,
boxScore: 0.7,
id: expect.any(String),
text: 'One',
textScore: 0.9,
x1: 0,
y1: 1,
x2: 2,
y2: 3,
x3: 4,
y3: 5,
x4: 6,
y4: 7,
},
{
assetId: asset.id,
boxScore: 0.67,
id: expect.any(String),
text: 'Two',
textScore: 0.89,
x1: 8,
y1: 9,
x2: 10,
y2: 11,
x3: 12,
y3: 13,
x4: 14,
y4: 15,
},
{
assetId: asset.id,
boxScore: 0.65,
id: expect.any(String),
text: 'Three',
textScore: 0.88,
x1: 16,
y1: 17,
x2: 18,
y2: 19,
x3: 20,
y3: 21,
x4: 22,
y4: 23,
},
{
assetId: asset.id,
boxScore: 0.62,
id: expect.any(String),
text: 'Four',
textScore: 0.87,
x1: 24,
y1: 25,
x2: 26,
y2: 27,
x3: 28,
y3: 29,
x4: 30,
y4: 31,
},
{
assetId: asset.id,
boxScore: 0.6,
id: expect.any(String),
text: 'Five',
textScore: 0.86,
x1: 32,
y1: 33,
x2: 34,
y2: 35,
x3: 36,
y3: 37,
x4: 38,
y4: 39,
},
]);
await expect(
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
).resolves.toEqual({
assetId: asset.id,
text: 'One Two Three Four Five',
});
await expect(
ctx.database
.selectFrom('asset_job_status')
.select('asset_job_status.ocrAt')
.where('assetId', '=', asset.id)
.executeTakeFirst(),
).resolves.toEqual({ ocrAt: expect.any(Date) });
});
it('should handle no boxes', async () => {
const { sut, ctx } = setup();
const { user } = await ctx.newUser();
const { asset } = await ctx.newAsset({ ownerId: user.id });
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
const machineLearningMock = ctx.getMock(MachineLearningRepository);
machineLearningMock.ocr.mockResolvedValue({ box: [], boxScore: [], text: [], textScore: [] });
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
const ocrRepository = ctx.get(OcrRepository);
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([]);
await expect(
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
).resolves.toBeUndefined();
await expect(
ctx.database
.selectFrom('asset_job_status')
.select('asset_job_status.ocrAt')
.where('assetId', '=', asset.id)
.executeTakeFirst(),
).resolves.toEqual({ ocrAt: expect.any(Date) });
});
it('should update existing results', async () => {
const { sut, ctx } = setup();
const { user } = await ctx.newUser();
const { asset } = await ctx.newAsset({ ownerId: user.id });
await ctx.newAssetFile({ assetId: asset.id, type: AssetFileType.Preview, path: 'preview.jpg' });
const machineLearningMock = ctx.getMock(MachineLearningRepository);
machineLearningMock.ocr.mockResolvedValue({
box: [10, 10, 50, 10, 50, 50, 10, 50],
boxScore: [0.99],
text: ['Test OCR'],
textScore: [0.95],
});
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
machineLearningMock.ocr.mockResolvedValue({ box: [], boxScore: [], text: [], textScore: [] });
await expect(sut.handleOcr({ id: asset.id })).resolves.toBe(JobStatus.Success);
const ocrRepository = ctx.get(OcrRepository);
await expect(ocrRepository.getByAssetId(asset.id)).resolves.toEqual([]);
await expect(
ctx.database.selectFrom('ocr_search').selectAll().where('assetId', '=', asset.id).executeTakeFirst(),
).resolves.toBeUndefined();
});
});