mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-04 03:27:09 -05:00 
			
		
		
		
	* refactor: migrate person repository to kysely * `asVector` begone * linting * fix metadata faces * update test --------- Co-authored-by: Alex <alex.tran1502@gmail.com> Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
from abc import abstractmethod
 | 
						|
from functools import cached_property
 | 
						|
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import NDArray
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from app.config import log
 | 
						|
from app.models.base import InferenceModel
 | 
						|
from app.models.transforms import (
 | 
						|
    crop_pil,
 | 
						|
    decode_pil,
 | 
						|
    get_pil_resampling,
 | 
						|
    normalize,
 | 
						|
    resize_pil,
 | 
						|
    serialize_np_array,
 | 
						|
    to_numpy,
 | 
						|
)
 | 
						|
from app.schemas import ModelSession, ModelTask, ModelType
 | 
						|
 | 
						|
 | 
						|
class BaseCLIPVisualEncoder(InferenceModel):
 | 
						|
    depends = []
 | 
						|
    identity = (ModelType.VISUAL, ModelTask.SEARCH)
 | 
						|
 | 
						|
    def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> str:
 | 
						|
        image = decode_pil(inputs)
 | 
						|
        res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
 | 
						|
        return serialize_np_array(res)
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    def model_cfg_path(self) -> Path:
 | 
						|
        return self.cache_dir / "config.json"
 | 
						|
 | 
						|
    @property
 | 
						|
    def preprocess_cfg_path(self) -> Path:
 | 
						|
        return self.model_dir / "preprocess_cfg.json"
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def model_cfg(self) -> dict[str, Any]:
 | 
						|
        log.debug(f"Loading model config for CLIP model '{self.model_name}'")
 | 
						|
        model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
 | 
						|
        log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
 | 
						|
        return model_cfg
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def preprocess_cfg(self) -> dict[str, Any]:
 | 
						|
        log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
 | 
						|
        preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
 | 
						|
        log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
 | 
						|
        return preprocess_cfg
 | 
						|
 | 
						|
 | 
						|
class OpenClipVisualEncoder(BaseCLIPVisualEncoder):
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        size: list[int] | int = self.preprocess_cfg["size"]
 | 
						|
        self.size = size[0] if isinstance(size, list) else size
 | 
						|
 | 
						|
        self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
 | 
						|
        self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
 | 
						|
        self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
 | 
						|
 | 
						|
        return super()._load()
 | 
						|
 | 
						|
    def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | 
						|
        image = resize_pil(image, self.size)
 | 
						|
        image = crop_pil(image, self.size)
 | 
						|
        image_np = to_numpy(image)
 | 
						|
        image_np = normalize(image_np, self.mean, self.std)
 | 
						|
        return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
 |