mirror of
https://github.com/immich-app/immich.git
synced 2025-11-07 23:33:04 -05:00
* Add proxy changes * Add web changes * Add microservices changes * Add examples * Add header comment to nginx config * Use URLs instead of host and port
69 lines
2.2 KiB
TypeScript
69 lines
2.2 KiB
TypeScript
import { AssetEntity } from '@app/database/entities/asset.entity';
|
|
import { SmartInfoEntity } from '@app/database/entities/smart-info.entity';
|
|
import { MachineLearningJobNameEnum, QueueNameEnum } from '@app/job';
|
|
import { IMachineLearningJob } from '@app/job/interfaces/machine-learning.interface';
|
|
import { Process, Processor } from '@nestjs/bull';
|
|
import { Logger } from '@nestjs/common';
|
|
import { InjectRepository } from '@nestjs/typeorm';
|
|
import axios from 'axios';
|
|
import { Job } from 'bull';
|
|
import { Repository } from 'typeorm';
|
|
|
|
const immich_machine_learning_url = process.env.IMMICH_MACHINE_LEARNING_URL || 'http://immich-machine-learning:3003';
|
|
|
|
@Processor(QueueNameEnum.MACHINE_LEARNING)
|
|
export class MachineLearningProcessor {
|
|
constructor(
|
|
@InjectRepository(SmartInfoEntity)
|
|
private smartInfoRepository: Repository<SmartInfoEntity>,
|
|
) {}
|
|
|
|
@Process({ name: MachineLearningJobNameEnum.IMAGE_TAGGING, concurrency: 2 })
|
|
async tagImage(job: Job<IMachineLearningJob>) {
|
|
const { asset } = job.data;
|
|
|
|
const res = await axios.post(
|
|
immich_machine_learning_url + '/image-classifier/tag-image',
|
|
{
|
|
thumbnailPath: asset.resizePath,
|
|
},
|
|
);
|
|
|
|
if (res.status == 201 && res.data.length > 0) {
|
|
const smartInfo = new SmartInfoEntity();
|
|
smartInfo.assetId = asset.id;
|
|
smartInfo.tags = [...res.data];
|
|
|
|
await this.smartInfoRepository.upsert(smartInfo, {
|
|
conflictPaths: ['assetId'],
|
|
});
|
|
}
|
|
}
|
|
|
|
@Process({ name: MachineLearningJobNameEnum.OBJECT_DETECTION, concurrency: 2 })
|
|
async detectObject(job: Job<IMachineLearningJob>) {
|
|
try {
|
|
const { asset }: { asset: AssetEntity } = job.data;
|
|
|
|
const res = await axios.post(
|
|
immich_machine_learning_url + '/object-detection/detect-object',
|
|
{
|
|
thumbnailPath: asset.resizePath,
|
|
},
|
|
);
|
|
|
|
if (res.status == 201 && res.data.length > 0) {
|
|
const smartInfo = new SmartInfoEntity();
|
|
smartInfo.assetId = asset.id;
|
|
smartInfo.objects = [...res.data];
|
|
|
|
await this.smartInfoRepository.upsert(smartInfo, {
|
|
conflictPaths: ['assetId'],
|
|
});
|
|
}
|
|
} catch (error) {
|
|
Logger.error(`Failed to trigger object detection pipe line ${String(error)}`);
|
|
}
|
|
}
|
|
}
|