mirror of
https://github.com/immich-app/immich.git
synced 2025-11-13 10:06:51 -05:00
* fix resizing, use pillow * unused import * linting * lanczos * optimizations fused operations unused import
152 lines
6.1 KiB
Python
152 lines
6.1 KiB
Python
from typing import Any
|
|
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
from PIL import Image
|
|
from rapidocr.ch_ppocr_rec import TextRecInput
|
|
from rapidocr.ch_ppocr_rec import TextRecognizer as RapidTextRecognizer
|
|
from rapidocr.inference_engine.base import FileInfo, InferSession
|
|
from rapidocr.utils import DownloadFile, DownloadFileInput
|
|
from rapidocr.utils.typings import EngineType, LangRec, OCRVersion, TaskType
|
|
from rapidocr.utils.typings import ModelType as RapidModelType
|
|
from rapidocr.utils.vis_res import VisRes
|
|
|
|
from immich_ml.config import log, settings
|
|
from immich_ml.models.base import InferenceModel
|
|
from immich_ml.models.transforms import pil_to_cv2
|
|
from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
|
|
from immich_ml.sessions.ort import OrtSession
|
|
|
|
from .schemas import OcrOptions, TextDetectionOutput, TextRecognitionOutput
|
|
|
|
|
|
class TextRecognizer(InferenceModel):
|
|
depends = [(ModelType.DETECTION, ModelTask.OCR)]
|
|
identity = (ModelType.RECOGNITION, ModelTask.OCR)
|
|
|
|
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
|
|
self.min_score = model_kwargs.get("minScore", 0.9)
|
|
self._empty: TextRecognitionOutput = {
|
|
"box": np.empty(0, dtype=np.float32),
|
|
"boxScore": np.empty(0, dtype=np.float32),
|
|
"text": [],
|
|
"textScore": np.empty(0, dtype=np.float32),
|
|
}
|
|
VisRes.__init__ = lambda self, **kwargs: None # pyright: ignore[reportAttributeAccessIssue]
|
|
super().__init__(model_name, **model_kwargs, model_format=ModelFormat.ONNX)
|
|
|
|
def _download(self) -> None:
|
|
model_info = InferSession.get_model_url(
|
|
FileInfo(
|
|
engine_type=EngineType.ONNXRUNTIME,
|
|
ocr_version=OCRVersion.PPOCRV5,
|
|
task_type=TaskType.REC,
|
|
lang_type=LangRec.CH,
|
|
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
|
|
)
|
|
)
|
|
download_params = DownloadFileInput(
|
|
file_url=model_info["model_dir"],
|
|
sha256=model_info["SHA256"],
|
|
save_path=self.model_path,
|
|
logger=log,
|
|
)
|
|
DownloadFile.run(download_params)
|
|
|
|
def _load(self) -> ModelSession:
|
|
# TODO: support other runtimes
|
|
session = OrtSession(self.model_path)
|
|
self.model = RapidTextRecognizer(
|
|
OcrOptions(
|
|
session=session.session,
|
|
rec_batch_num=settings.max_batch_size.text_recognition if settings.max_batch_size is not None else 6,
|
|
rec_img_shape=(3, 48, 320),
|
|
)
|
|
)
|
|
return session
|
|
|
|
def _predict(self, img: Image.Image, texts: TextDetectionOutput) -> TextRecognitionOutput:
|
|
boxes, box_scores = texts["boxes"], texts["scores"]
|
|
if boxes.shape[0] == 0:
|
|
return self._empty
|
|
rec = self.model(TextRecInput(img=self.get_crop_img_list(img, boxes)))
|
|
if rec.txts is None:
|
|
return self._empty
|
|
|
|
boxes[:, :, 0] /= img.width
|
|
boxes[:, :, 1] /= img.height
|
|
|
|
text_scores = np.array(rec.scores)
|
|
valid_text_score_idx = text_scores > self.min_score
|
|
valid_score_idx_list = valid_text_score_idx.tolist()
|
|
return {
|
|
"box": boxes.reshape(-1, 8)[valid_text_score_idx].reshape(-1),
|
|
"text": [rec.txts[i] for i in range(len(rec.txts)) if valid_score_idx_list[i]],
|
|
"boxScore": box_scores[valid_text_score_idx],
|
|
"textScore": text_scores[valid_text_score_idx],
|
|
}
|
|
|
|
def get_crop_img_list(self, img: Image.Image, boxes: NDArray[np.float32]) -> list[NDArray[np.uint8]]:
|
|
img_crop_width = np.maximum(
|
|
np.linalg.norm(boxes[:, 1] - boxes[:, 0], axis=1), np.linalg.norm(boxes[:, 2] - boxes[:, 3], axis=1)
|
|
).astype(np.int32)
|
|
img_crop_height = np.maximum(
|
|
np.linalg.norm(boxes[:, 0] - boxes[:, 3], axis=1), np.linalg.norm(boxes[:, 1] - boxes[:, 2], axis=1)
|
|
).astype(np.int32)
|
|
pts_std = np.zeros((img_crop_width.shape[0], 4, 2), dtype=np.float32)
|
|
pts_std[:, 1:3, 0] = img_crop_width[:, None]
|
|
pts_std[:, 2:4, 1] = img_crop_height[:, None]
|
|
|
|
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1)
|
|
all_coeffs = self._get_perspective_transform(pts_std, boxes)
|
|
imgs: list[NDArray[np.uint8]] = []
|
|
for coeffs, dst_size in zip(all_coeffs, img_crop_sizes):
|
|
dst_img = img.transform(
|
|
size=tuple(dst_size),
|
|
method=Image.Transform.PERSPECTIVE,
|
|
data=tuple(coeffs),
|
|
resample=Image.Resampling.BICUBIC,
|
|
)
|
|
|
|
dst_width, dst_height = dst_img.size
|
|
if dst_height * 1.0 / dst_width >= 1.5:
|
|
dst_img = dst_img.rotate(90, expand=True)
|
|
imgs.append(pil_to_cv2(dst_img))
|
|
|
|
return imgs
|
|
|
|
def _get_perspective_transform(self, src: NDArray[np.float32], dst: NDArray[np.float32]) -> NDArray[np.float32]:
|
|
N = src.shape[0]
|
|
x, y = src[:, :, 0], src[:, :, 1]
|
|
u, v = dst[:, :, 0], dst[:, :, 1]
|
|
A = np.zeros((N, 8, 9), dtype=np.float32)
|
|
|
|
# Fill even rows (0, 2, 4, 6): [x, y, 1, 0, 0, 0, -u*x, -u*y, -u]
|
|
A[:, ::2, 0] = x
|
|
A[:, ::2, 1] = y
|
|
A[:, ::2, 2] = 1
|
|
A[:, ::2, 6] = -u * x
|
|
A[:, ::2, 7] = -u * y
|
|
A[:, ::2, 8] = -u
|
|
|
|
# Fill odd rows (1, 3, 5, 7): [0, 0, 0, x, y, 1, -v*x, -v*y, -v]
|
|
A[:, 1::2, 3] = x
|
|
A[:, 1::2, 4] = y
|
|
A[:, 1::2, 5] = 1
|
|
A[:, 1::2, 6] = -v * x
|
|
A[:, 1::2, 7] = -v * y
|
|
A[:, 1::2, 8] = -v
|
|
|
|
# Solve using SVD for all matrices at once
|
|
_, _, Vt = np.linalg.svd(A)
|
|
H = Vt[:, -1, :].reshape(N, 3, 3)
|
|
H = H / H[:, 2:3, 2:3]
|
|
|
|
# Extract the 8 coefficients for each transformation
|
|
return np.column_stack(
|
|
[H[:, 0, 0], H[:, 0, 1], H[:, 0, 2], H[:, 1, 0], H[:, 1, 1], H[:, 1, 2], H[:, 2, 0], H[:, 2, 1]]
|
|
) # pyright: ignore[reportReturnType]
|
|
|
|
def configure(self, **kwargs: Any) -> None:
|
|
self.min_score = kwargs.get("minScore", self.min_score)
|