mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-30 18:22:37 -04:00 
			
		
		
		
	* export clip models * export to hf refactored export code * export mclip, general refactoring cleanup * updated conda deps * do transforms with pillow and numpy, add tokenization config to export, general refactoring * moved conda dockerfile, re-added poetry * minor fixes * updated link * updated tests * removed `requirements.txt` from workflow * fixed mimalloc path * removed torchvision * cleaner np typing * review suggestions * update default model name * update test
		
			
				
	
	
		
			39 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			39 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from pathlib import Path
 | |
| 
 | |
| import onnx
 | |
| import onnxruntime as ort
 | |
| import onnxsim
 | |
| 
 | |
| 
 | |
| def optimize_onnxsim(model_path: Path | str, output_path: Path | str) -> None:
 | |
|     model_path = Path(model_path)
 | |
|     output_path = Path(output_path)
 | |
|     model = onnx.load(model_path.as_posix())
 | |
|     model, check = onnxsim.simplify(model, skip_shape_inference=True)
 | |
|     assert check, "Simplified ONNX model could not be validated"
 | |
|     onnx.save(model, output_path.as_posix())
 | |
| 
 | |
| 
 | |
| def optimize_ort(
 | |
|     model_path: Path | str,
 | |
|     output_path: Path | str,
 | |
|     level: ort.GraphOptimizationLevel = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC,
 | |
| ) -> None:
 | |
|     model_path = Path(model_path)
 | |
|     output_path = Path(output_path)
 | |
| 
 | |
|     sess_options = ort.SessionOptions()
 | |
|     sess_options.graph_optimization_level = level
 | |
|     sess_options.optimized_model_filepath = output_path.as_posix()
 | |
| 
 | |
|     ort.InferenceSession(model_path.as_posix(), providers=["CPUExecutionProvider"], sess_options=sess_options)
 | |
| 
 | |
| 
 | |
| def optimize(model_path: Path | str) -> None:
 | |
|     model_path = Path(model_path)
 | |
| 
 | |
|     optimize_ort(model_path, model_path)
 | |
|     # onnxsim serializes large models as a blob, which uses much more memory when loading the model at runtime
 | |
|     if not any(file.name.startswith("Constant") for file in model_path.parent.iterdir()):
 | |
|         optimize_onnxsim(model_path, model_path)
 |