mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-03 19:17:11 -05:00 
			
		
		
		
	* configurable batch size, default openvino to 1 * update docs * don't add a new dependency for two lines * fix typing
		
			
				
	
	
		
			87 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			87 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import onnx
 | 
						|
import onnxruntime as ort
 | 
						|
from insightface.model_zoo import ArcFaceONNX
 | 
						|
from insightface.utils.face_align import norm_crop
 | 
						|
from numpy.typing import NDArray
 | 
						|
from onnx.tools.update_model_dims import update_inputs_outputs_dims
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from app.config import log, settings
 | 
						|
from app.models.base import InferenceModel
 | 
						|
from app.models.transforms import decode_cv2
 | 
						|
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelFormat, ModelSession, ModelTask, ModelType
 | 
						|
 | 
						|
 | 
						|
class FaceRecognizer(InferenceModel):
 | 
						|
    depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
 | 
						|
    identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
 | 
						|
 | 
						|
    def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
 | 
						|
        super().__init__(model_name, **model_kwargs)
 | 
						|
        self.min_score = model_kwargs.pop("minScore", min_score)
 | 
						|
        max_batch_size = settings.max_batch_size.facial_recognition if settings.max_batch_size else None
 | 
						|
        self.batch_size = max_batch_size if max_batch_size else self._batch_size_default
 | 
						|
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        session = self._make_session(self.model_path)
 | 
						|
        if (not self.batch_size or self.batch_size > 1) and str(session.get_inputs()[0].shape[0]) != "batch":
 | 
						|
            self._add_batch_axis(self.model_path)
 | 
						|
            session = self._make_session(self.model_path)
 | 
						|
        self.model = ArcFaceONNX(
 | 
						|
            self.model_path.with_suffix(".onnx").as_posix(),
 | 
						|
            session=session,
 | 
						|
        )
 | 
						|
        return session
 | 
						|
 | 
						|
    def _predict(
 | 
						|
        self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput, **kwargs: Any
 | 
						|
    ) -> FacialRecognitionOutput:
 | 
						|
        if faces["boxes"].shape[0] == 0:
 | 
						|
            return []
 | 
						|
        inputs = decode_cv2(inputs)
 | 
						|
        cropped_faces = self._crop(inputs, faces)
 | 
						|
        embeddings = self._predict_batch(cropped_faces)
 | 
						|
        return self.postprocess(faces, embeddings)
 | 
						|
 | 
						|
    def _predict_batch(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
 | 
						|
        if not self.batch_size or len(cropped_faces) <= self.batch_size:
 | 
						|
            embeddings: NDArray[np.float32] = self.model.get_feat(cropped_faces)
 | 
						|
            return embeddings
 | 
						|
 | 
						|
        batch_embeddings: list[NDArray[np.float32]] = []
 | 
						|
        for i in range(0, len(cropped_faces), self.batch_size):
 | 
						|
            batch_embeddings.append(self.model.get_feat(cropped_faces[i : i + self.batch_size]))
 | 
						|
        return np.concatenate(batch_embeddings, axis=0)
 | 
						|
 | 
						|
    def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
 | 
						|
                "embedding": embedding,
 | 
						|
                "score": score,
 | 
						|
            }
 | 
						|
            for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
 | 
						|
        ]
 | 
						|
 | 
						|
    def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
 | 
						|
        return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
 | 
						|
 | 
						|
    def _add_batch_axis(self, model_path: Path) -> None:
 | 
						|
        log.debug(f"Adding batch axis to model {model_path}")
 | 
						|
        proto = onnx.load(model_path)
 | 
						|
        static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
 | 
						|
        static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
 | 
						|
        input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
 | 
						|
        output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
 | 
						|
        updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
 | 
						|
        onnx.save(updated_proto, model_path)
 | 
						|
 | 
						|
    @property
 | 
						|
    def _batch_size_default(self) -> int | None:
 | 
						|
        providers = ort.get_available_providers()
 | 
						|
        return None if self.model_format == ModelFormat.ONNX and "OpenVINOExecutionProvider" not in providers else 1
 |