mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-03 19:17:11 -05:00 
			
		
		
		
	* feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
		
			
				
	
	
		
			42 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			42 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from insightface.model_zoo import RetinaFace
 | 
						|
from numpy.typing import NDArray
 | 
						|
 | 
						|
from immich_ml.models.base import InferenceModel
 | 
						|
from immich_ml.models.transforms import decode_cv2
 | 
						|
from immich_ml.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
 | 
						|
 | 
						|
 | 
						|
class FaceDetector(InferenceModel):
 | 
						|
    depends = []
 | 
						|
    identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
 | 
						|
 | 
						|
    def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
 | 
						|
        self.min_score = model_kwargs.pop("minScore", min_score)
 | 
						|
        super().__init__(model_name, **model_kwargs)
 | 
						|
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        session = self._make_session(self.model_path)
 | 
						|
        self.model = RetinaFace(session=session)
 | 
						|
        self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
 | 
						|
 | 
						|
        return session
 | 
						|
 | 
						|
    def _predict(self, inputs: NDArray[np.uint8] | bytes) -> FaceDetectionOutput:
 | 
						|
        inputs = decode_cv2(inputs)
 | 
						|
 | 
						|
        bboxes, landmarks = self._detect(inputs)
 | 
						|
        return {
 | 
						|
            "boxes": bboxes[:, :4].round(),
 | 
						|
            "scores": bboxes[:, 4],
 | 
						|
            "landmarks": landmarks,
 | 
						|
        }
 | 
						|
 | 
						|
    def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
 | 
						|
        return self.model.detect(inputs)  # type: ignore
 | 
						|
 | 
						|
    def configure(self, **kwargs: Any) -> None:
 | 
						|
        self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)
 |