mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-04 03:27:09 -05:00 
			
		
		
		
	* feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
		
			
				
	
	
		
			93 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import onnx
 | 
						|
import onnxruntime as ort
 | 
						|
from insightface.model_zoo import ArcFaceONNX
 | 
						|
from insightface.utils.face_align import norm_crop
 | 
						|
from numpy.typing import NDArray
 | 
						|
from onnx.tools.update_model_dims import update_inputs_outputs_dims
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from immich_ml.config import log, settings
 | 
						|
from immich_ml.models.base import InferenceModel
 | 
						|
from immich_ml.models.transforms import decode_cv2, serialize_np_array
 | 
						|
from immich_ml.schemas import (
 | 
						|
    FaceDetectionOutput,
 | 
						|
    FacialRecognitionOutput,
 | 
						|
    ModelFormat,
 | 
						|
    ModelSession,
 | 
						|
    ModelTask,
 | 
						|
    ModelType,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
class FaceRecognizer(InferenceModel):
 | 
						|
    depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
 | 
						|
    identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
 | 
						|
 | 
						|
    def __init__(self, model_name: str, **model_kwargs: Any) -> None:
 | 
						|
        super().__init__(model_name, **model_kwargs)
 | 
						|
        max_batch_size = settings.max_batch_size.facial_recognition if settings.max_batch_size else None
 | 
						|
        self.batch_size = max_batch_size if max_batch_size else self._batch_size_default
 | 
						|
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        session = self._make_session(self.model_path)
 | 
						|
        if (not self.batch_size or self.batch_size > 1) and str(session.get_inputs()[0].shape[0]) != "batch":
 | 
						|
            self._add_batch_axis(self.model_path)
 | 
						|
            session = self._make_session(self.model_path)
 | 
						|
        self.model = ArcFaceONNX(
 | 
						|
            self.model_path_for_format(ModelFormat.ONNX).as_posix(),
 | 
						|
            session=session,
 | 
						|
        )
 | 
						|
        return session
 | 
						|
 | 
						|
    def _predict(
 | 
						|
        self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput
 | 
						|
    ) -> FacialRecognitionOutput:
 | 
						|
        if faces["boxes"].shape[0] == 0:
 | 
						|
            return []
 | 
						|
        inputs = decode_cv2(inputs)
 | 
						|
        cropped_faces = self._crop(inputs, faces)
 | 
						|
        embeddings = self._predict_batch(cropped_faces)
 | 
						|
        return self.postprocess(faces, embeddings)
 | 
						|
 | 
						|
    def _predict_batch(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
 | 
						|
        if not self.batch_size or len(cropped_faces) <= self.batch_size:
 | 
						|
            embeddings: NDArray[np.float32] = self.model.get_feat(cropped_faces)
 | 
						|
            return embeddings
 | 
						|
 | 
						|
        batch_embeddings: list[NDArray[np.float32]] = []
 | 
						|
        for i in range(0, len(cropped_faces), self.batch_size):
 | 
						|
            batch_embeddings.append(self.model.get_feat(cropped_faces[i : i + self.batch_size]))
 | 
						|
        return np.concatenate(batch_embeddings, axis=0)
 | 
						|
 | 
						|
    def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
 | 
						|
        return [
 | 
						|
            {
 | 
						|
                "boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
 | 
						|
                "embedding": serialize_np_array(embedding),
 | 
						|
                "score": score,
 | 
						|
            }
 | 
						|
            for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
 | 
						|
        ]
 | 
						|
 | 
						|
    def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
 | 
						|
        return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
 | 
						|
 | 
						|
    def _add_batch_axis(self, model_path: Path) -> None:
 | 
						|
        log.debug(f"Adding batch axis to model {model_path}")
 | 
						|
        proto = onnx.load(model_path)
 | 
						|
        static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
 | 
						|
        static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
 | 
						|
        input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
 | 
						|
        output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
 | 
						|
        updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
 | 
						|
        onnx.save(updated_proto, model_path)
 | 
						|
 | 
						|
    @property
 | 
						|
    def _batch_size_default(self) -> int | None:
 | 
						|
        providers = ort.get_available_providers()
 | 
						|
        return None if self.model_format == ModelFormat.ONNX and "OpenVINOExecutionProvider" not in providers else 1
 |