Mert 84c35e35d6
chore(ml): installable package (#17153)
* app -> immich_ml

* fix test ci

* omit file name

* add new line

* add new line
2025-03-27 19:49:09 +00:00

77 lines
2.7 KiB
Python

from __future__ import annotations
from pathlib import Path
from typing import Any, NamedTuple
import numpy as np
from numpy.typing import NDArray
from immich_ml.config import log, settings
from immich_ml.schemas import SessionNode
from .rknnpool import RknnPoolExecutor, is_available, soc_name
is_available = is_available and settings.rknn
model_prefix = Path("rknpu") / soc_name if is_available and soc_name is not None else None
def run_inference(rknn_lite: Any, input: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]:
outputs: list[NDArray[np.float32]] = rknn_lite.inference(inputs=input, data_format="nchw")
return outputs
input_output_mapping: dict[str, dict[str, Any]] = {
"detection": {
"input": {"norm_tensor:0": (1, 3, 640, 640)},
"output": {
"norm_tensor:1": (12800, 1),
"norm_tensor:2": (3200, 1),
"norm_tensor:3": (800, 1),
"norm_tensor:4": (12800, 4),
"norm_tensor:5": (3200, 4),
"norm_tensor:6": (800, 4),
"norm_tensor:7": (12800, 10),
"norm_tensor:8": (3200, 10),
"norm_tensor:9": (800, 10),
},
},
"recognition": {"input": {"norm_tensor:0": (1, 3, 112, 112)}, "output": {"norm_tensor:1": (1, 512)}},
}
class RknnSession:
def __init__(self, model_path: Path) -> None:
self.model_type = "detection" if "detection" in model_path.parts else "recognition"
self.tpe = settings.rknn_threads
log.info(f"Loading RKNN model from {model_path} with {self.tpe} threads.")
self.rknnpool = RknnPoolExecutor(model_path=model_path.as_posix(), tpes=self.tpe, func=run_inference)
log.info(f"Loaded RKNN model from {model_path} with {self.tpe} threads.")
def get_inputs(self) -> list[SessionNode]:
return [RknnNode(name=k, shape=v) for k, v in input_output_mapping[self.model_type]["input"].items()]
def get_outputs(self) -> list[SessionNode]:
return [RknnNode(name=k, shape=v) for k, v in input_output_mapping[self.model_type]["output"].items()]
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
run_options: Any = None,
) -> list[NDArray[np.float32]]:
input_data: list[NDArray[np.float32]] = [np.ascontiguousarray(v) for v in input_feed.values()]
self.rknnpool.put(input_data)
res = self.rknnpool.get()
if res is None:
raise RuntimeError("RKNN inference failed!")
return res
class RknnNode(NamedTuple):
name: str | None
shape: tuple[int, ...]
__all__ = ["RknnSession", "RknnNode", "is_available", "soc_name", "model_prefix"]