Mert 84c35e35d6
chore(ml): installable package (#17153)
* app -> immich_ml

* fix test ci

* omit file name

* add new line

* add new line
2025-03-27 19:49:09 +00:00

92 lines
2.7 KiB
Python

# This code is from leafqycc/rknn-multi-threaded
# Following Apache License 2.0
import logging
from concurrent.futures import Future, ThreadPoolExecutor
from pathlib import Path
from queue import Queue
from typing import Callable
import numpy as np
from numpy.typing import NDArray
from immich_ml.config import log
from immich_ml.models.constants import RKNN_COREMASK_SUPPORTED_SOCS, RKNN_SUPPORTED_SOCS
def get_soc(device_tree_path: Path | str) -> str | None:
try:
with Path(device_tree_path).open() as f:
device_compatible_str = f.read()
for soc in RKNN_SUPPORTED_SOCS:
if soc in device_compatible_str:
return soc
log.warning("Device is not supported for RKNN")
except OSError as e:
log.warning(f"Could not read {device_tree_path}. Reason: %s", e)
return None
soc_name = None
is_available = False
try:
from rknnlite.api import RKNNLite
soc_name = get_soc("/proc/device-tree/compatible")
is_available = soc_name is not None
except ImportError:
log.debug("RKNN is not available")
def init_rknn(model_path: str) -> "RKNNLite":
if not is_available:
raise RuntimeError("rknn is not available!")
rknn_lite = RKNNLite()
rknn_lite.rknn_log.logger.setLevel(logging.ERROR)
ret = rknn_lite.load_rknn(model_path)
if ret != 0:
raise RuntimeError("Failed to load RKNN model")
if soc_name in RKNN_COREMASK_SUPPORTED_SOCS:
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO)
else:
ret = rknn_lite.init_runtime() # Please do not set this parameter on other platforms.
if ret != 0:
raise RuntimeError("Failed to inititalize RKNN runtime environment")
return rknn_lite
class RknnPoolExecutor:
def __init__(
self,
model_path: str,
tpes: int,
func: Callable[["RKNNLite", list[NDArray[np.float32]]], list[NDArray[np.float32]]],
) -> None:
self.tpes = tpes
self.queue: Queue[Future[list[NDArray[np.float32]]]] = Queue()
self.rknn_pool = [init_rknn(model_path) for _ in range(tpes)]
self.pool = ThreadPoolExecutor(max_workers=tpes)
self.func = func
self.num = 0
def put(self, inputs: list[NDArray[np.float32]]) -> None:
self.queue.put(self.pool.submit(self.func, self.rknn_pool[self.num % self.tpes], inputs))
self.num += 1
def get(self) -> list[NDArray[np.float32]] | None:
if self.queue.empty():
return None
fut = self.queue.get()
return fut.result()
def release(self) -> None:
self.pool.shutdown()
for rknn_lite in self.rknn_pool:
rknn_lite.release()
def __del__(self) -> None:
self.release()