mirror of
https://github.com/immich-app/immich.git
synced 2025-05-24 01:12:58 -04:00
92 lines
2.7 KiB
Python
92 lines
2.7 KiB
Python
# This code is from leafqycc/rknn-multi-threaded
|
|
# Following Apache License 2.0
|
|
|
|
import logging
|
|
from concurrent.futures import Future, ThreadPoolExecutor
|
|
from pathlib import Path
|
|
from queue import Queue
|
|
from typing import Callable
|
|
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
|
|
from immich_ml.config import log
|
|
from immich_ml.models.constants import RKNN_COREMASK_SUPPORTED_SOCS, RKNN_SUPPORTED_SOCS
|
|
|
|
|
|
def get_soc(device_tree_path: Path | str) -> str | None:
|
|
try:
|
|
with Path(device_tree_path).open() as f:
|
|
device_compatible_str = f.read()
|
|
for soc in RKNN_SUPPORTED_SOCS:
|
|
if soc in device_compatible_str:
|
|
return soc
|
|
log.warning("Device is not supported for RKNN")
|
|
except OSError as e:
|
|
log.warning(f"Could not read {device_tree_path}. Reason: %s", e)
|
|
return None
|
|
|
|
|
|
soc_name = None
|
|
is_available = False
|
|
try:
|
|
from rknnlite.api import RKNNLite
|
|
|
|
soc_name = get_soc("/proc/device-tree/compatible")
|
|
is_available = soc_name is not None
|
|
except ImportError:
|
|
log.debug("RKNN is not available")
|
|
|
|
|
|
def init_rknn(model_path: str) -> "RKNNLite":
|
|
if not is_available:
|
|
raise RuntimeError("rknn is not available!")
|
|
rknn_lite = RKNNLite()
|
|
rknn_lite.rknn_log.logger.setLevel(logging.ERROR)
|
|
ret = rknn_lite.load_rknn(model_path)
|
|
if ret != 0:
|
|
raise RuntimeError("Failed to load RKNN model")
|
|
|
|
if soc_name in RKNN_COREMASK_SUPPORTED_SOCS:
|
|
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO)
|
|
else:
|
|
ret = rknn_lite.init_runtime() # Please do not set this parameter on other platforms.
|
|
|
|
if ret != 0:
|
|
raise RuntimeError("Failed to inititalize RKNN runtime environment")
|
|
|
|
return rknn_lite
|
|
|
|
|
|
class RknnPoolExecutor:
|
|
def __init__(
|
|
self,
|
|
model_path: str,
|
|
tpes: int,
|
|
func: Callable[["RKNNLite", list[NDArray[np.float32]]], list[NDArray[np.float32]]],
|
|
) -> None:
|
|
self.tpes = tpes
|
|
self.queue: Queue[Future[list[NDArray[np.float32]]]] = Queue()
|
|
self.rknn_pool = [init_rknn(model_path) for _ in range(tpes)]
|
|
self.pool = ThreadPoolExecutor(max_workers=tpes)
|
|
self.func = func
|
|
self.num = 0
|
|
|
|
def put(self, inputs: list[NDArray[np.float32]]) -> None:
|
|
self.queue.put(self.pool.submit(self.func, self.rknn_pool[self.num % self.tpes], inputs))
|
|
self.num += 1
|
|
|
|
def get(self) -> list[NDArray[np.float32]] | None:
|
|
if self.queue.empty():
|
|
return None
|
|
fut = self.queue.get()
|
|
return fut.result()
|
|
|
|
def release(self) -> None:
|
|
self.pool.shutdown()
|
|
for rknn_lite in self.rknn_pool:
|
|
rknn_lite.release()
|
|
|
|
def __del__(self) -> None:
|
|
self.release()
|