mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-26 08:12:33 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			42 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			42 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| from insightface.model_zoo import RetinaFace
 | |
| from numpy.typing import NDArray
 | |
| 
 | |
| from immich_ml.models.base import InferenceModel
 | |
| from immich_ml.models.transforms import decode_cv2
 | |
| from immich_ml.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
 | |
| 
 | |
| 
 | |
| class FaceDetector(InferenceModel):
 | |
|     depends = []
 | |
|     identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
 | |
| 
 | |
|     def __init__(self, model_name: str, min_score: float = 0.7, **model_kwargs: Any) -> None:
 | |
|         self.min_score = model_kwargs.pop("minScore", min_score)
 | |
|         super().__init__(model_name, **model_kwargs)
 | |
| 
 | |
|     def _load(self) -> ModelSession:
 | |
|         session = self._make_session(self.model_path)
 | |
|         self.model = RetinaFace(session=session)
 | |
|         self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
 | |
| 
 | |
|         return session
 | |
| 
 | |
|     def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput:
 | |
|         inputs = decode_cv2(inputs)
 | |
| 
 | |
|         bboxes, landmarks = self._detect(inputs)
 | |
|         return {
 | |
|             "boxes": bboxes[:, :4].round(),
 | |
|             "scores": bboxes[:, 4],
 | |
|             "landmarks": landmarks,
 | |
|         }
 | |
| 
 | |
|     def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
 | |
|         return self.model.detect(inputs)  # type: ignore
 | |
| 
 | |
|     def configure(self, **kwargs: Any) -> None:
 | |
|         self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)
 |