mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-04 03:27:09 -05:00 
			
		
		
		
	* fix(deps): update machine-learning * update openvino options, cuda * update openvino build * fix indentation * update minimum nvidia driver --------- Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com> Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
		
			
				
	
	
		
			63 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			63 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from io import BytesIO
 | 
						|
from typing import IO
 | 
						|
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import NDArray
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
_PIL_RESAMPLING_METHODS = {resampling.name.lower(): resampling for resampling in Image.Resampling}
 | 
						|
 | 
						|
 | 
						|
def resize_pil(img: Image.Image, size: int) -> Image.Image:
 | 
						|
    if img.width < img.height:
 | 
						|
        return img.resize((size, int((img.height / img.width) * size)), resample=Image.Resampling.BICUBIC)
 | 
						|
    else:
 | 
						|
        return img.resize((int((img.width / img.height) * size), size), resample=Image.Resampling.BICUBIC)
 | 
						|
 | 
						|
 | 
						|
# https://stackoverflow.com/a/60883103
 | 
						|
def crop_pil(img: Image.Image, size: int) -> Image.Image:
 | 
						|
    left = int((img.size[0] / 2) - (size / 2))
 | 
						|
    upper = int((img.size[1] / 2) - (size / 2))
 | 
						|
    right = left + size
 | 
						|
    lower = upper + size
 | 
						|
 | 
						|
    return img.crop((left, upper, right, lower))
 | 
						|
 | 
						|
 | 
						|
def to_numpy(img: Image.Image) -> NDArray[np.float32]:
 | 
						|
    return np.asarray(img if img.mode == "RGB" else img.convert("RGB"), dtype=np.float32) / 255.0
 | 
						|
 | 
						|
 | 
						|
def normalize(
 | 
						|
    img: NDArray[np.float32], mean: float | NDArray[np.float32], std: float | NDArray[np.float32]
 | 
						|
) -> NDArray[np.float32]:
 | 
						|
    return np.divide(img - mean, std, dtype=np.float32)
 | 
						|
 | 
						|
 | 
						|
def get_pil_resampling(resample: str) -> Image.Resampling:
 | 
						|
    return _PIL_RESAMPLING_METHODS[resample.lower()]
 | 
						|
 | 
						|
 | 
						|
def pil_to_cv2(image: Image.Image) -> NDArray[np.uint8]:
 | 
						|
    return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)  # type: ignore
 | 
						|
 | 
						|
 | 
						|
def decode_pil(image_bytes: bytes | IO[bytes] | Image.Image) -> Image.Image:
 | 
						|
    if isinstance(image_bytes, Image.Image):
 | 
						|
        return image_bytes
 | 
						|
    image: Image.Image = Image.open(BytesIO(image_bytes) if isinstance(image_bytes, bytes) else image_bytes)
 | 
						|
    image.load()
 | 
						|
    if not image.mode == "RGB":
 | 
						|
        image = image.convert("RGB")
 | 
						|
    return image
 | 
						|
 | 
						|
 | 
						|
def decode_cv2(image_bytes: NDArray[np.uint8] | bytes | Image.Image) -> NDArray[np.uint8]:
 | 
						|
    if isinstance(image_bytes, bytes):
 | 
						|
        image_bytes = decode_pil(image_bytes)  # pillow is much faster than cv2
 | 
						|
    if isinstance(image_bytes, Image.Image):
 | 
						|
        return pil_to_cv2(image_bytes)
 | 
						|
    return image_bytes
 |