Kang 02b29046b3
feat: ocr (#18836)
* feat: add OCR functionality and related configurations

* chore: update labeler configuration for machine learning files

* feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features

* chore: update Dockerfile to include ccache for improved build performance

* feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure

* refactor(ocr): remove OCR_CLEANUP job from enum and type definitions

* refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure

* refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files

* feat: enhance OCR configuration and functionality

- Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score.
- Refactored PaddleOCRecognizer to utilize new scoring parameters.
- Introduced new database tables for asset OCR data and search functionality.
- Modified related services and repositories to support the new OCR features.
- Updated translations for improved clarity in settings UI.

* sql changes

* use rapidocr

* change dto

* update web

* update lock

* update api

* store positions as normalized floats

* match column order in db

* update admin ui settings descriptions

fix max resolution key

set min threshold to 0.1

fix bind

* apply config correctly, adjust defaults

* unnecessary model type

* unnecessary sources

* fix(ocr): switch RapidOCR lang type from LangDet to LangRec

* fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR

* fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent

* fix(ocr): add OCR search fields

* fix: Add OCR database migration and update ML prediction logic.

* trigrams are already case insensitive

* add tests

* format

* update migrations

* wrong uuid function

* linting

* maybe fix medium tests

* formatting

* fix weblate check

* openapi

* sql

* minor fixes

* maybe fix medium tests part 2

* passing medium tests

* format web

* readd sql

* format dart

* disabled in e2e

* chore: translation ordering

---------

Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
2025-10-27 14:09:55 +00:00

118 lines
2.3 KiB
Python

from enum import Enum
from typing import Any, Literal, Protocol, TypeGuard, TypeVar
import numpy as np
import numpy.typing as npt
from typing_extensions import TypedDict
class StrEnum(str, Enum):
value: str
def __str__(self) -> str:
return self.value
class BoundingBox(TypedDict):
x1: int
y1: int
x2: int
y2: int
class ModelTask(StrEnum):
FACIAL_RECOGNITION = "facial-recognition"
SEARCH = "clip"
OCR = "ocr"
class ModelType(StrEnum):
DETECTION = "detection"
RECOGNITION = "recognition"
TEXTUAL = "textual"
VISUAL = "visual"
class ModelFormat(StrEnum):
ARMNN = "armnn"
ONNX = "onnx"
RKNN = "rknn"
class ModelSource(StrEnum):
INSIGHTFACE = "insightface"
MCLIP = "mclip"
OPENCLIP = "openclip"
PADDLE = "paddle"
ModelIdentity = tuple[ModelType, ModelTask]
class SessionNode(Protocol):
@property
def name(self) -> str | None: ...
@property
def shape(self) -> tuple[int, ...]: ...
class ModelSession(Protocol):
def run(
self,
output_names: list[str] | None,
input_feed: dict[str, npt.NDArray[np.float32]] | dict[str, npt.NDArray[np.int32]],
run_options: Any = None,
) -> list[npt.NDArray[np.float32]]: ...
def get_inputs(self) -> list[SessionNode]: ...
def get_outputs(self) -> list[SessionNode]: ...
class HasProfiling(Protocol):
profiling: dict[str, float]
class FaceDetectionOutput(TypedDict):
boxes: npt.NDArray[np.float32]
scores: npt.NDArray[np.float32]
landmarks: npt.NDArray[np.float32]
class DetectedFace(TypedDict):
boundingBox: BoundingBox
embedding: str
score: float
FacialRecognitionOutput = list[DetectedFace]
class PipelineEntry(TypedDict):
modelName: str
options: dict[str, Any]
PipelineRequest = dict[ModelTask, dict[ModelType, PipelineEntry]]
class InferenceEntry(TypedDict):
name: str
task: ModelTask
type: ModelType
options: dict[str, Any]
InferenceEntries = tuple[list[InferenceEntry], list[InferenceEntry]]
InferenceResponse = dict[ModelTask | Literal["imageHeight"] | Literal["imageWidth"], Any]
def has_profiling(obj: Any) -> TypeGuard[HasProfiling]:
return hasattr(obj, "profiling") and isinstance(obj.profiling, dict)
T = TypeVar("T")