immich/server/src/repositories/machine-learning.repository.ts
Tom Graham a808b8610e
fix(server): Fix delay with multiple ml servers (#16284)
* Prospective fix for ensuring that known active ML servers are used to reduce search delay.

* Added some logging and renamed backoff const.

* Fix lint issues.

* Update to use env vars for timeouts and updated documentation and strings.

* Fix docs.

* Make counter logic clearer.

* Minor readability improvements.

* Extract  skipUrl logic per feedback, and change log to verbose.

* Make code harder to read.
2025-02-27 10:14:09 -06:00

192 lines
6.4 KiB
TypeScript

import { Injectable } from '@nestjs/common';
import { readFile } from 'node:fs/promises';
import { MACHINE_LEARNING_AVAILABILITY_BACKOFF_TIME, MACHINE_LEARNING_PING_TIMEOUT } from 'src/constants';
import { CLIPConfig } from 'src/dtos/model-config.dto';
import { LoggingRepository } from 'src/repositories/logging.repository';
export interface BoundingBox {
x1: number;
y1: number;
x2: number;
y2: number;
}
export enum ModelTask {
FACIAL_RECOGNITION = 'facial-recognition',
SEARCH = 'clip',
}
export enum ModelType {
DETECTION = 'detection',
PIPELINE = 'pipeline',
RECOGNITION = 'recognition',
TEXTUAL = 'textual',
VISUAL = 'visual',
}
export type ModelPayload = { imagePath: string } | { text: string };
type ModelOptions = { modelName: string };
export type FaceDetectionOptions = ModelOptions & { minScore: number };
type VisualResponse = { imageHeight: number; imageWidth: number };
export type ClipVisualRequest = { [ModelTask.SEARCH]: { [ModelType.VISUAL]: ModelOptions } };
export type ClipVisualResponse = { [ModelTask.SEARCH]: string } & VisualResponse;
export type ClipTextualRequest = { [ModelTask.SEARCH]: { [ModelType.TEXTUAL]: ModelOptions } };
export type ClipTextualResponse = { [ModelTask.SEARCH]: string };
export type FacialRecognitionRequest = {
[ModelTask.FACIAL_RECOGNITION]: {
[ModelType.DETECTION]: ModelOptions & { options: { minScore: number } };
[ModelType.RECOGNITION]: ModelOptions;
};
};
export interface Face {
boundingBox: BoundingBox;
embedding: string;
score: number;
}
export type FacialRecognitionResponse = { [ModelTask.FACIAL_RECOGNITION]: Face[] } & VisualResponse;
export type DetectedFaces = { faces: Face[] } & VisualResponse;
export type MachineLearningRequest = ClipVisualRequest | ClipTextualRequest | FacialRecognitionRequest;
@Injectable()
export class MachineLearningRepository {
// Note that deleted URL's are not removed from this map (ie: they're leaked)
// Cleaning them up is low priority since there should be very few over a
// typical server uptime cycle
private urlAvailability: {
[url: string]:
| {
active: boolean;
lastChecked: number;
}
| undefined;
};
constructor(private logger: LoggingRepository) {
this.logger.setContext(MachineLearningRepository.name);
this.urlAvailability = {};
}
private setUrlAvailability(url: string, active: boolean) {
const current = this.urlAvailability[url];
if (current?.active !== active) {
this.logger.verbose(`Setting ${url} ML server to ${active ? 'active' : 'inactive'}.`);
}
this.urlAvailability[url] = {
active,
lastChecked: Date.now(),
};
}
private async checkAvailability(url: string) {
let active = false;
try {
const response = await fetch(new URL('/ping', url), {
signal: AbortSignal.timeout(MACHINE_LEARNING_PING_TIMEOUT),
});
active = response.ok;
} catch {}
this.setUrlAvailability(url, active);
return active;
}
private async shouldSkipUrl(url: string) {
const availability = this.urlAvailability[url];
if (availability === undefined) {
// If this is a new endpoint, then check inline and skip if it fails
if (!(await this.checkAvailability(url))) {
return true;
}
return false;
}
if (!availability.active && Date.now() - availability.lastChecked < MACHINE_LEARNING_AVAILABILITY_BACKOFF_TIME) {
// If this is an old inactive endpoint that hasn't been checked in a
// while then check but don't wait for the result, just skip it
// This avoids delays on every search whilst allowing higher priority
// ML servers to recover over time.
void this.checkAvailability(url);
return true;
}
return false;
}
private async predict<T>(urls: string[], payload: ModelPayload, config: MachineLearningRequest): Promise<T> {
const formData = await this.getFormData(payload, config);
let urlCounter = 0;
for (const url of urls) {
urlCounter++;
const isLast = urlCounter >= urls.length;
if (!isLast && (await this.shouldSkipUrl(url))) {
continue;
}
try {
const response = await fetch(new URL('/predict', url), { method: 'POST', body: formData });
if (response.ok) {
this.setUrlAvailability(url, true);
return response.json();
}
this.logger.warn(
`Machine learning request to "${url}" failed with status ${response.status}: ${response.statusText}`,
);
} catch (error: Error | unknown) {
this.logger.warn(
`Machine learning request to "${url}" failed: ${error instanceof Error ? error.message : error}`,
);
}
this.setUrlAvailability(url, false);
}
throw new Error(`Machine learning request '${JSON.stringify(config)}' failed for all URLs`);
}
async detectFaces(urls: string[], imagePath: string, { modelName, minScore }: FaceDetectionOptions) {
const request = {
[ModelTask.FACIAL_RECOGNITION]: {
[ModelType.DETECTION]: { modelName, options: { minScore } },
[ModelType.RECOGNITION]: { modelName },
},
};
const response = await this.predict<FacialRecognitionResponse>(urls, { imagePath }, request);
return {
imageHeight: response.imageHeight,
imageWidth: response.imageWidth,
faces: response[ModelTask.FACIAL_RECOGNITION],
};
}
async encodeImage(urls: string[], imagePath: string, { modelName }: CLIPConfig) {
const request = { [ModelTask.SEARCH]: { [ModelType.VISUAL]: { modelName } } };
const response = await this.predict<ClipVisualResponse>(urls, { imagePath }, request);
return response[ModelTask.SEARCH];
}
async encodeText(urls: string[], text: string, { modelName }: CLIPConfig) {
const request = { [ModelTask.SEARCH]: { [ModelType.TEXTUAL]: { modelName } } };
const response = await this.predict<ClipTextualResponse>(urls, { text }, request);
return response[ModelTask.SEARCH];
}
private async getFormData(payload: ModelPayload, config: MachineLearningRequest): Promise<FormData> {
const formData = new FormData();
formData.append('entries', JSON.stringify(config));
if ('imagePath' in payload) {
formData.append('image', new Blob([await readFile(payload.imagePath)]));
} else if ('text' in payload) {
formData.append('text', payload.text);
} else {
throw new Error('Invalid input');
}
return formData;
}
}