mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-04 03:27:09 -05:00 
			
		
		
		
	* feat: add OCR functionality and related configurations * chore: update labeler configuration for machine learning files * feat(i18n): enhance OCR model descriptions and add orientation classification and unwarping features * chore: update Dockerfile to include ccache for improved build performance * feat(ocr): enhance OCR model configuration with orientation classification and unwarping options, update PaddleOCR integration, and improve response structure * refactor(ocr): remove OCR_CLEANUP job from enum and type definitions * refactor(ocr): remove obsolete OCR entity and migration files, and update asset job status and schema to accommodate new OCR table structure * refactor(ocr): update OCR schema and response structure to use individual coordinates instead of bounding box, and adjust related service and repository files * feat: enhance OCR configuration and functionality - Updated OCR settings to include minimum detection box score, minimum detection score, and minimum recognition score. - Refactored PaddleOCRecognizer to utilize new scoring parameters. - Introduced new database tables for asset OCR data and search functionality. - Modified related services and repositories to support the new OCR features. - Updated translations for improved clarity in settings UI. * sql changes * use rapidocr * change dto * update web * update lock * update api * store positions as normalized floats * match column order in db * update admin ui settings descriptions fix max resolution key set min threshold to 0.1 fix bind * apply config correctly, adjust defaults * unnecessary model type * unnecessary sources * fix(ocr): switch RapidOCR lang type from LangDet to LangRec * fix(ocr): expose lang_type (LangRec.CH) and font_path on OcrOptions for RapidOCR * fix(ocr): make OCR text search case- and accent-insensitive using ILIKE + unaccent * fix(ocr): add OCR search fields * fix: Add OCR database migration and update ML prediction logic. * trigrams are already case insensitive * add tests * format * update migrations * wrong uuid function * linting * maybe fix medium tests * formatting * fix weblate check * openapi * sql * minor fixes * maybe fix medium tests part 2 * passing medium tests * format web * readd sql * format dart * disabled in e2e * chore: translation ordering --------- Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com> Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
		
			
				
	
	
		
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
from abc import abstractmethod
 | 
						|
from functools import cached_property
 | 
						|
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from numpy.typing import NDArray
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
from immich_ml.config import log
 | 
						|
from immich_ml.models.base import InferenceModel
 | 
						|
from immich_ml.models.transforms import (
 | 
						|
    crop_pil,
 | 
						|
    decode_pil,
 | 
						|
    get_pil_resampling,
 | 
						|
    normalize,
 | 
						|
    resize_pil,
 | 
						|
    serialize_np_array,
 | 
						|
    to_numpy,
 | 
						|
)
 | 
						|
from immich_ml.schemas import ModelSession, ModelTask, ModelType
 | 
						|
 | 
						|
 | 
						|
class BaseCLIPVisualEncoder(InferenceModel):
 | 
						|
    depends = []
 | 
						|
    identity = (ModelType.VISUAL, ModelTask.SEARCH)
 | 
						|
 | 
						|
    def _predict(self, inputs: Image.Image | bytes) -> str:
 | 
						|
        image = decode_pil(inputs)
 | 
						|
        res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
 | 
						|
        return serialize_np_array(res)
 | 
						|
 | 
						|
    @abstractmethod
 | 
						|
    def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | 
						|
        pass
 | 
						|
 | 
						|
    @property
 | 
						|
    def model_cfg_path(self) -> Path:
 | 
						|
        return self.cache_dir / "config.json"
 | 
						|
 | 
						|
    @property
 | 
						|
    def preprocess_cfg_path(self) -> Path:
 | 
						|
        return self.model_dir / "preprocess_cfg.json"
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def model_cfg(self) -> dict[str, Any]:
 | 
						|
        log.debug(f"Loading model config for CLIP model '{self.model_name}'")
 | 
						|
        model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
 | 
						|
        log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
 | 
						|
        return model_cfg
 | 
						|
 | 
						|
    @cached_property
 | 
						|
    def preprocess_cfg(self) -> dict[str, Any]:
 | 
						|
        log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
 | 
						|
        preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
 | 
						|
        log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
 | 
						|
        return preprocess_cfg
 | 
						|
 | 
						|
 | 
						|
class OpenClipVisualEncoder(BaseCLIPVisualEncoder):
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        size: list[int] | int = self.preprocess_cfg["size"]
 | 
						|
        self.size = size[0] if isinstance(size, list) else size
 | 
						|
 | 
						|
        self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
 | 
						|
        self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
 | 
						|
        self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
 | 
						|
 | 
						|
        return super()._load()
 | 
						|
 | 
						|
    def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | 
						|
        image = resize_pil(image, self.size)
 | 
						|
        image = crop_pil(image, self.size)
 | 
						|
        image_np = to_numpy(image)
 | 
						|
        image_np = normalize(image_np, self.mean, self.std)
 | 
						|
        return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
 |