mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-30 18:22:37 -04:00 
			
		
		
		
	* improved typing * improved export typing * strict mypy & check export folder * formatting * add formatting checks for export folder * re-added init call
		
			
				
	
	
		
			76 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from io import BytesIO
 | |
| from pathlib import Path
 | |
| from typing import Any
 | |
| 
 | |
| from huggingface_hub import snapshot_download
 | |
| from optimum.onnxruntime import ORTModelForImageClassification
 | |
| from optimum.pipelines import pipeline
 | |
| from PIL import Image
 | |
| from transformers import AutoImageProcessor
 | |
| 
 | |
| from ..config import log
 | |
| from ..schemas import ModelType
 | |
| from .base import InferenceModel
 | |
| 
 | |
| 
 | |
| class ImageClassifier(InferenceModel):
 | |
|     _model_type = ModelType.IMAGE_CLASSIFICATION
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         model_name: str,
 | |
|         min_score: float = 0.9,
 | |
|         cache_dir: Path | str | None = None,
 | |
|         **model_kwargs: Any,
 | |
|     ) -> None:
 | |
|         self.min_score = model_kwargs.pop("minScore", min_score)
 | |
|         super().__init__(model_name, cache_dir, **model_kwargs)
 | |
| 
 | |
|     def _download(self) -> None:
 | |
|         snapshot_download(
 | |
|             cache_dir=self.cache_dir,
 | |
|             repo_id=self.model_name,
 | |
|             allow_patterns=["*.bin", "*.json", "*.txt"],
 | |
|             local_dir=self.cache_dir,
 | |
|             local_dir_use_symlinks=True,
 | |
|         )
 | |
| 
 | |
|     def _load(self) -> None:
 | |
|         processor = AutoImageProcessor.from_pretrained(self.cache_dir, cache_dir=self.cache_dir)
 | |
|         model_path = self.cache_dir / "model.onnx"
 | |
|         model_kwargs = {
 | |
|             "cache_dir": self.cache_dir,
 | |
|             "provider": self.providers[0],
 | |
|             "provider_options": self.provider_options[0],
 | |
|             "session_options": self.sess_options,
 | |
|         }
 | |
| 
 | |
|         if model_path.exists():
 | |
|             model = ORTModelForImageClassification.from_pretrained(self.cache_dir, **model_kwargs)
 | |
|             self.model = pipeline(self.model_type.value, model, feature_extractor=processor)
 | |
|         else:
 | |
|             log.info(
 | |
|                 (
 | |
|                     f"ONNX model not found in cache directory for '{self.model_name}'."
 | |
|                     "Exporting optimized model for future use."
 | |
|                 ),
 | |
|             )
 | |
|             self.sess_options.optimized_model_filepath = model_path.as_posix()
 | |
|             self.model = pipeline(
 | |
|                 self.model_type.value,
 | |
|                 self.model_name,
 | |
|                 model_kwargs=model_kwargs,
 | |
|                 feature_extractor=processor,
 | |
|             )
 | |
| 
 | |
|     def _predict(self, image: Image.Image | bytes) -> list[str]:
 | |
|         if isinstance(image, bytes):
 | |
|             image = Image.open(BytesIO(image))
 | |
|         predictions: list[dict[str, Any]] = self.model(image)
 | |
|         tags = [tag for pred in predictions for tag in pred["label"].split(", ") if pred["score"] >= self.min_score]
 | |
| 
 | |
|         return tags
 | |
| 
 | |
|     def configure(self, **model_kwargs: Any) -> None:
 | |
|         self.min_score = model_kwargs.pop("minScore", self.min_score)
 |