Mert 79d0e3e1ed
fix(ml): ocr inputs not resized correctly (#23541)
* fix resizing, use pillow

* unused import

* linting

* lanczos

* optimizations

fused operations

unused import
2025-11-03 07:21:30 +00:00

152 lines
6.1 KiB
Python

from typing import Any
import numpy as np
from numpy.typing import NDArray
from PIL import Image
from rapidocr.ch_ppocr_rec import TextRecInput
from rapidocr.ch_ppocr_rec import TextRecognizer as RapidTextRecognizer
from rapidocr.inference_engine.base import FileInfo, InferSession
from rapidocr.utils import DownloadFile, DownloadFileInput
from rapidocr.utils.typings import EngineType, LangRec, OCRVersion, TaskType
from rapidocr.utils.typings import ModelType as RapidModelType
from rapidocr.utils.vis_res import VisRes
from immich_ml.config import log, settings
from immich_ml.models.base import InferenceModel
from immich_ml.models.transforms import pil_to_cv2
from immich_ml.schemas import ModelFormat, ModelSession, ModelTask, ModelType
from immich_ml.sessions.ort import OrtSession
from .schemas import OcrOptions, TextDetectionOutput, TextRecognitionOutput
class TextRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.OCR)]
identity = (ModelType.RECOGNITION, ModelTask.OCR)
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
self.min_score = model_kwargs.get("minScore", 0.9)
self._empty: TextRecognitionOutput = {
"box": np.empty(0, dtype=np.float32),
"boxScore": np.empty(0, dtype=np.float32),
"text": [],
"textScore": np.empty(0, dtype=np.float32),
}
VisRes.__init__ = lambda self, **kwargs: None # pyright: ignore[reportAttributeAccessIssue]
super().__init__(model_name, **model_kwargs, model_format=ModelFormat.ONNX)
def _download(self) -> None:
model_info = InferSession.get_model_url(
FileInfo(
engine_type=EngineType.ONNXRUNTIME,
ocr_version=OCRVersion.PPOCRV5,
task_type=TaskType.REC,
lang_type=LangRec.CH,
model_type=RapidModelType.MOBILE if "mobile" in self.model_name else RapidModelType.SERVER,
)
)
download_params = DownloadFileInput(
file_url=model_info["model_dir"],
sha256=model_info["SHA256"],
save_path=self.model_path,
logger=log,
)
DownloadFile.run(download_params)
def _load(self) -> ModelSession:
# TODO: support other runtimes
session = OrtSession(self.model_path)
self.model = RapidTextRecognizer(
OcrOptions(
session=session.session,
rec_batch_num=settings.max_batch_size.text_recognition if settings.max_batch_size is not None else 6,
rec_img_shape=(3, 48, 320),
)
)
return session
def _predict(self, img: Image.Image, texts: TextDetectionOutput) -> TextRecognitionOutput:
boxes, box_scores = texts["boxes"], texts["scores"]
if boxes.shape[0] == 0:
return self._empty
rec = self.model(TextRecInput(img=self.get_crop_img_list(img, boxes)))
if rec.txts is None:
return self._empty
boxes[:, :, 0] /= img.width
boxes[:, :, 1] /= img.height
text_scores = np.array(rec.scores)
valid_text_score_idx = text_scores > self.min_score
valid_score_idx_list = valid_text_score_idx.tolist()
return {
"box": boxes.reshape(-1, 8)[valid_text_score_idx].reshape(-1),
"text": [rec.txts[i] for i in range(len(rec.txts)) if valid_score_idx_list[i]],
"boxScore": box_scores[valid_text_score_idx],
"textScore": text_scores[valid_text_score_idx],
}
def get_crop_img_list(self, img: Image.Image, boxes: NDArray[np.float32]) -> list[NDArray[np.uint8]]:
img_crop_width = np.maximum(
np.linalg.norm(boxes[:, 1] - boxes[:, 0], axis=1), np.linalg.norm(boxes[:, 2] - boxes[:, 3], axis=1)
).astype(np.int32)
img_crop_height = np.maximum(
np.linalg.norm(boxes[:, 0] - boxes[:, 3], axis=1), np.linalg.norm(boxes[:, 1] - boxes[:, 2], axis=1)
).astype(np.int32)
pts_std = np.zeros((img_crop_width.shape[0], 4, 2), dtype=np.float32)
pts_std[:, 1:3, 0] = img_crop_width[:, None]
pts_std[:, 2:4, 1] = img_crop_height[:, None]
img_crop_sizes = np.stack([img_crop_width, img_crop_height], axis=1)
all_coeffs = self._get_perspective_transform(pts_std, boxes)
imgs: list[NDArray[np.uint8]] = []
for coeffs, dst_size in zip(all_coeffs, img_crop_sizes):
dst_img = img.transform(
size=tuple(dst_size),
method=Image.Transform.PERSPECTIVE,
data=tuple(coeffs),
resample=Image.Resampling.BICUBIC,
)
dst_width, dst_height = dst_img.size
if dst_height * 1.0 / dst_width >= 1.5:
dst_img = dst_img.rotate(90, expand=True)
imgs.append(pil_to_cv2(dst_img))
return imgs
def _get_perspective_transform(self, src: NDArray[np.float32], dst: NDArray[np.float32]) -> NDArray[np.float32]:
N = src.shape[0]
x, y = src[:, :, 0], src[:, :, 1]
u, v = dst[:, :, 0], dst[:, :, 1]
A = np.zeros((N, 8, 9), dtype=np.float32)
# Fill even rows (0, 2, 4, 6): [x, y, 1, 0, 0, 0, -u*x, -u*y, -u]
A[:, ::2, 0] = x
A[:, ::2, 1] = y
A[:, ::2, 2] = 1
A[:, ::2, 6] = -u * x
A[:, ::2, 7] = -u * y
A[:, ::2, 8] = -u
# Fill odd rows (1, 3, 5, 7): [0, 0, 0, x, y, 1, -v*x, -v*y, -v]
A[:, 1::2, 3] = x
A[:, 1::2, 4] = y
A[:, 1::2, 5] = 1
A[:, 1::2, 6] = -v * x
A[:, 1::2, 7] = -v * y
A[:, 1::2, 8] = -v
# Solve using SVD for all matrices at once
_, _, Vt = np.linalg.svd(A)
H = Vt[:, -1, :].reshape(N, 3, 3)
H = H / H[:, 2:3, 2:3]
# Extract the 8 coefficients for each transformation
return np.column_stack(
[H[:, 0, 0], H[:, 0, 1], H[:, 0, 2], H[:, 1, 0], H[:, 1, 1], H[:, 1, 2], H[:, 2, 0], H[:, 2, 1]]
) # pyright: ignore[reportReturnType]
def configure(self, **kwargs: Any) -> None:
self.min_score = kwargs.get("minScore", self.min_score)