immich/server/src/migrations/1718486162779-AddFaceSearchRelation.ts
2024-10-03 17:48:40 -04:00

83 lines
3.4 KiB
TypeScript

import { DatabaseExtension } from 'src/interfaces/database.interface';
import { ConfigRepository } from 'src/repositories/config.repository';
import { MigrationInterface, QueryRunner } from 'typeorm';
const vectorExtension = new ConfigRepository().getEnv().database.vectorExtension;
export class AddFaceSearchRelation1718486162779 implements MigrationInterface {
public async up(queryRunner: QueryRunner): Promise<void> {
if (vectorExtension === DatabaseExtension.VECTORS) {
await queryRunner.query(`SET search_path TO "$user", public, vectors`);
await queryRunner.query(`SET vectors.pgvector_compatibility=on`);
}
const hasEmbeddings = async (tableName: string): Promise<boolean> => {
const columns = await queryRunner.query(
`SELECT column_name as name
FROM information_schema.columns
WHERE table_name = '${tableName}'`,
);
return columns.some((column: { name: string }) => column.name === 'embedding');
};
const hasAssetEmbeddings = await hasEmbeddings('smart_search');
if (!hasAssetEmbeddings) {
await queryRunner.query(`TRUNCATE smart_search`);
await queryRunner.query(`ALTER TABLE smart_search ADD COLUMN IF NOT EXISTS embedding vector(512) NOT NULL`);
}
await queryRunner.query(`
CREATE TABLE face_search (
"faceId" uuid PRIMARY KEY REFERENCES asset_faces(id) ON DELETE CASCADE,
embedding vector(512) NOT NULL )`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE EXTERNAL`);
await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE EXTERNAL`);
const hasFaceEmbeddings = await hasEmbeddings('asset_faces');
if (hasFaceEmbeddings) {
await queryRunner.query(`
INSERT INTO face_search("faceId", embedding)
SELECT id, embedding
FROM asset_faces faces`);
}
await queryRunner.query(`ALTER TABLE asset_faces DROP COLUMN IF EXISTS embedding`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET DATA TYPE real[]`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET DATA TYPE vector(512)`);
await queryRunner.query(`
CREATE INDEX IF NOT EXISTS clip_index ON smart_search
USING hnsw (embedding vector_cosine_ops)
WITH (ef_construction = 300, m = 16)`);
await queryRunner.query(`
CREATE INDEX face_index ON face_search
USING hnsw (embedding vector_cosine_ops)
WITH (ef_construction = 300, m = 16)`);
}
public async down(queryRunner: QueryRunner): Promise<void> {
if (vectorExtension === DatabaseExtension.VECTORS) {
await queryRunner.query(`SET search_path TO "$user", public, vectors`);
await queryRunner.query(`SET vectors.pgvector_compatibility=on`);
}
await queryRunner.query(`ALTER TABLE asset_faces ADD COLUMN "embedding" vector(512)`);
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE DEFAULT`);
await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE DEFAULT`);
await queryRunner.query(`
UPDATE asset_faces
SET embedding = fs.embedding
FROM face_search fs
WHERE id = fs."faceId"`);
await queryRunner.query(`DROP TABLE face_search`);
await queryRunner.query(`
CREATE INDEX face_index ON asset_faces
USING hnsw (embedding vector_cosine_ops)
WITH (ef_construction = 300, m = 16)`);
}
}