mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-04 03:27:09 -05:00 
			
		
		
		
	* configurable batch size, default openvino to 1 * update docs * don't add a new dependency for two lines * fix typing
		
			
				
	
	
		
			131 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import concurrent.futures
 | 
						|
import logging
 | 
						|
import os
 | 
						|
import sys
 | 
						|
from pathlib import Path
 | 
						|
from socket import socket
 | 
						|
 | 
						|
from gunicorn.arbiter import Arbiter
 | 
						|
from pydantic import BaseModel
 | 
						|
from pydantic_settings import BaseSettings, SettingsConfigDict
 | 
						|
from rich.console import Console
 | 
						|
from rich.logging import RichHandler
 | 
						|
from uvicorn import Server
 | 
						|
from uvicorn.workers import UvicornWorker
 | 
						|
 | 
						|
 | 
						|
class PreloadModelData(BaseModel):
 | 
						|
    clip: str | None = None
 | 
						|
    facial_recognition: str | None = None
 | 
						|
 | 
						|
 | 
						|
class MaxBatchSize(BaseModel):
 | 
						|
    facial_recognition: int | None = None
 | 
						|
 | 
						|
 | 
						|
class Settings(BaseSettings):
 | 
						|
    model_config = SettingsConfigDict(
 | 
						|
        env_prefix="MACHINE_LEARNING_",
 | 
						|
        case_sensitive=False,
 | 
						|
        env_nested_delimiter="__",
 | 
						|
        protected_namespaces=("settings_",),
 | 
						|
    )
 | 
						|
 | 
						|
    cache_folder: Path = Path("/cache")
 | 
						|
    model_ttl: int = 300
 | 
						|
    model_ttl_poll_s: int = 10
 | 
						|
    host: str = "0.0.0.0"
 | 
						|
    port: int = 3003
 | 
						|
    workers: int = 1
 | 
						|
    test_full: bool = False
 | 
						|
    request_threads: int = os.cpu_count() or 4
 | 
						|
    model_inter_op_threads: int = 0
 | 
						|
    model_intra_op_threads: int = 0
 | 
						|
    ann: bool = True
 | 
						|
    ann_fp16_turbo: bool = False
 | 
						|
    ann_tuning_level: int = 2
 | 
						|
    preload: PreloadModelData | None = None
 | 
						|
    max_batch_size: MaxBatchSize | None = None
 | 
						|
 | 
						|
    @property
 | 
						|
    def device_id(self) -> str:
 | 
						|
        return os.environ.get("MACHINE_LEARNING_DEVICE_ID", "0")
 | 
						|
 | 
						|
 | 
						|
class LogSettings(BaseSettings):
 | 
						|
    model_config = SettingsConfigDict(case_sensitive=False)
 | 
						|
 | 
						|
    immich_log_level: str = "info"
 | 
						|
    no_color: bool = False
 | 
						|
 | 
						|
 | 
						|
_clean_name = str.maketrans(":\\/", "___", ".")
 | 
						|
 | 
						|
 | 
						|
def clean_name(model_name: str) -> str:
 | 
						|
    return model_name.split("/")[-1].translate(_clean_name)
 | 
						|
 | 
						|
 | 
						|
LOG_LEVELS: dict[str, int] = {
 | 
						|
    "critical": logging.ERROR,
 | 
						|
    "error": logging.ERROR,
 | 
						|
    "warning": logging.WARNING,
 | 
						|
    "warn": logging.WARNING,
 | 
						|
    "info": logging.INFO,
 | 
						|
    "log": logging.INFO,
 | 
						|
    "debug": logging.DEBUG,
 | 
						|
    "verbose": logging.DEBUG,
 | 
						|
}
 | 
						|
 | 
						|
settings = Settings()
 | 
						|
log_settings = LogSettings()
 | 
						|
 | 
						|
LOG_LEVEL = LOG_LEVELS.get(log_settings.immich_log_level.lower(), logging.INFO)
 | 
						|
 | 
						|
 | 
						|
class CustomRichHandler(RichHandler):
 | 
						|
    def __init__(self) -> None:
 | 
						|
        console = Console(color_system="standard", no_color=log_settings.no_color)
 | 
						|
        self.excluded = ["uvicorn", "starlette", "fastapi"]
 | 
						|
        super().__init__(
 | 
						|
            show_path=False,
 | 
						|
            omit_repeated_times=False,
 | 
						|
            console=console,
 | 
						|
            rich_tracebacks=True,
 | 
						|
            tracebacks_suppress=[*self.excluded, concurrent.futures],
 | 
						|
            tracebacks_show_locals=LOG_LEVEL == logging.DEBUG,
 | 
						|
        )
 | 
						|
 | 
						|
    # hack to exclude certain modules from rich tracebacks
 | 
						|
    def emit(self, record: logging.LogRecord) -> None:
 | 
						|
        if record.exc_info is not None:
 | 
						|
            tb = record.exc_info[2]
 | 
						|
            while tb is not None:
 | 
						|
                if any(excluded in tb.tb_frame.f_code.co_filename for excluded in self.excluded):
 | 
						|
                    tb.tb_frame.f_locals["_rich_traceback_omit"] = True
 | 
						|
                tb = tb.tb_next
 | 
						|
 | 
						|
        return super().emit(record)
 | 
						|
 | 
						|
 | 
						|
log = logging.getLogger("ml.log")
 | 
						|
log.setLevel(LOG_LEVEL)
 | 
						|
 | 
						|
 | 
						|
# patches this issue https://github.com/encode/uvicorn/discussions/1803
 | 
						|
class CustomUvicornServer(Server):
 | 
						|
    async def shutdown(self, sockets: list[socket] | None = None) -> None:
 | 
						|
        for sock in sockets or []:
 | 
						|
            sock.close()
 | 
						|
        await super().shutdown()
 | 
						|
 | 
						|
 | 
						|
class CustomUvicornWorker(UvicornWorker):
 | 
						|
    async def _serve(self) -> None:
 | 
						|
        self.config.app = self.wsgi
 | 
						|
        server = CustomUvicornServer(config=self.config)
 | 
						|
        self._install_sigquit_handler()
 | 
						|
        await server.serve(sockets=self.sockets)
 | 
						|
        if not server.started:
 | 
						|
            sys.exit(Arbiter.WORKER_BOOT_ERROR)
 |