mirror of
https://github.com/immich-app/immich.git
synced 2025-05-24 01:12:58 -04:00
177 lines
7.7 KiB
Diff
177 lines
7.7 KiB
Diff
From a598a88db258f82a6e4bca75810921bd6bcee7e0 Mon Sep 17 00:00:00 2001
|
|
From: David Nieto <dmnieto@gmail.com>
|
|
Date: Sat, 17 Feb 2024 11:23:12 -0800
|
|
Subject: [PATCH] Disable algo caching in ROCM EP
|
|
|
|
Similar to the work done by Liangxijun-1001 in
|
|
https://github.com/apache/tvm/pull/16178 the ROCM spec mandates calling
|
|
miopenFindConvolution*Algorithm() before using any Convolution API
|
|
|
|
This is the link to the porting guide describing this requirement
|
|
https://rocmdocs.amd.com/projects/MIOpen/en/latest/MIOpen_Porting_Guide.html
|
|
|
|
Thus, this change disables the algo cache and enforces the official
|
|
API semantics
|
|
|
|
Signed-off-by: David Nieto <dmnieto@gmail.com>
|
|
---
|
|
onnxruntime/core/providers/rocm/nn/conv.cc | 61 +++++++++----------
|
|
onnxruntime/core/providers/rocm/nn/conv.h | 6 --
|
|
.../core/providers/rocm/nn/conv_transpose.cc | 17 +++---
|
|
3 files changed, 36 insertions(+), 48 deletions(-)
|
|
|
|
diff --git a/onnxruntime/core/providers/rocm/nn/conv.cc b/onnxruntime/core/providers/rocm/nn/conv.cc
|
|
index 6214ec7bc0ea..b08aceca48b1 100644
|
|
--- a/onnxruntime/core/providers/rocm/nn/conv.cc
|
|
+++ b/onnxruntime/core/providers/rocm/nn/conv.cc
|
|
@@ -125,10 +125,8 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
|
|
if (input_dims_changed)
|
|
s_.last_x_dims = gsl::make_span(x_dims);
|
|
|
|
- if (w_dims_changed) {
|
|
+ if (w_dims_changed)
|
|
s_.last_w_dims = gsl::make_span(w_dims);
|
|
- s_.cached_benchmark_fwd_results.clear();
|
|
- }
|
|
|
|
ORT_RETURN_IF_ERROR(conv_attrs_.ValidateInputShape(X->Shape(), W->Shape(), channels_last, channels_last));
|
|
|
|
@@ -277,35 +275,6 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
|
|
HIP_CALL_THROW(hipMalloc(&s_.b_zero, malloc_size));
|
|
HIP_CALL_THROW(hipMemsetAsync(s_.b_zero, 0, malloc_size, Stream(context)));
|
|
}
|
|
-
|
|
- if (!s_.cached_benchmark_fwd_results.contains(x_dims_miopen)) {
|
|
- miopenConvAlgoPerf_t perf;
|
|
- int algo_count = 1;
|
|
- const ROCMExecutionProvider* rocm_ep = static_cast<const ROCMExecutionProvider*>(this->Info().GetExecutionProvider());
|
|
- static constexpr int num_algos = MIOPEN_CONVOLUTION_FWD_ALGO_COUNT;
|
|
- size_t max_ws_size = rocm_ep->GetMiopenConvUseMaxWorkspace() ? GetMaxWorkspaceSize(GetMiopenHandle(context), s_, kAllAlgos, num_algos)
|
|
- : AlgoSearchWorkspaceSize;
|
|
- IAllocatorUniquePtr<void> algo_search_workspace = GetTransientScratchBuffer<void>(max_ws_size);
|
|
- MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionForwardAlgorithm(
|
|
- GetMiopenHandle(context),
|
|
- s_.x_tensor,
|
|
- s_.x_data,
|
|
- s_.w_desc,
|
|
- s_.w_data,
|
|
- s_.conv_desc,
|
|
- s_.y_tensor,
|
|
- s_.y_data,
|
|
- 1, // requestedAlgoCount
|
|
- &algo_count, // returnedAlgoCount
|
|
- &perf,
|
|
- algo_search_workspace.get(),
|
|
- max_ws_size,
|
|
- false)); // Do not do exhaustive algo search.
|
|
- s_.cached_benchmark_fwd_results.insert(x_dims_miopen, {perf.fwd_algo, perf.memory});
|
|
- }
|
|
- const auto& perf = s_.cached_benchmark_fwd_results.at(x_dims_miopen);
|
|
- s_.fwd_algo = perf.fwd_algo;
|
|
- s_.workspace_bytes = perf.memory;
|
|
} else {
|
|
// set Y
|
|
s_.Y = context->Output(0, TensorShape(s_.y_dims));
|
|
@@ -319,6 +288,34 @@ Status Conv<T, NHWC>::UpdateState(OpKernelContext* context, bool bias_expected)
|
|
s_.y_data = reinterpret_cast<HipT*>(s_.Y->MutableData<T>());
|
|
}
|
|
}
|
|
+ {
|
|
+ /* FindConvolution must always be called by the runtime */
|
|
+ TensorShapeVector x_dims_miopen{x_dims.begin(), x_dims.end()};
|
|
+ miopenConvAlgoPerf_t perf;
|
|
+ int algo_count = 1;
|
|
+ const ROCMExecutionProvider* rocm_ep = static_cast<const ROCMExecutionProvider*>(this->Info().GetExecutionProvider());
|
|
+ static constexpr int num_algos = MIOPEN_CONVOLUTION_FWD_ALGO_COUNT;
|
|
+ size_t max_ws_size = rocm_ep->GetMiopenConvUseMaxWorkspace() ? GetMaxWorkspaceSize(GetMiopenHandle(context), s_, kAllAlgos, num_algos)
|
|
+ : AlgoSearchWorkspaceSize;
|
|
+ IAllocatorUniquePtr<void> algo_search_workspace = GetTransientScratchBuffer<void>(max_ws_size);
|
|
+ MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionForwardAlgorithm(
|
|
+ GetMiopenHandle(context),
|
|
+ s_.x_tensor,
|
|
+ s_.x_data,
|
|
+ s_.w_desc,
|
|
+ s_.w_data,
|
|
+ s_.conv_desc,
|
|
+ s_.y_tensor,
|
|
+ s_.y_data,
|
|
+ 1, // requestedAlgoCount
|
|
+ &algo_count, // returnedAlgoCount
|
|
+ &perf,
|
|
+ algo_search_workspace.get(),
|
|
+ max_ws_size,
|
|
+ false)); // Do not do exhaustive algo search.
|
|
+ s_.fwd_algo = perf.fwd_algo;
|
|
+ s_.workspace_bytes = perf.memory;
|
|
+ }
|
|
return Status::OK();
|
|
}
|
|
|
|
diff --git a/onnxruntime/core/providers/rocm/nn/conv.h b/onnxruntime/core/providers/rocm/nn/conv.h
|
|
index bc9846203e57..d54218f25854 100644
|
|
--- a/onnxruntime/core/providers/rocm/nn/conv.h
|
|
+++ b/onnxruntime/core/providers/rocm/nn/conv.h
|
|
@@ -108,9 +108,6 @@ class lru_unordered_map {
|
|
list_type lru_list_;
|
|
};
|
|
|
|
-// cached miopen descriptors
|
|
-constexpr size_t MAX_CACHED_ALGO_PERF_RESULTS = 10000;
|
|
-
|
|
template <typename AlgoPerfType>
|
|
struct MiopenConvState {
|
|
// if x/w dims changed, update algo and miopenTensors
|
|
@@ -148,9 +145,6 @@ struct MiopenConvState {
|
|
decltype(AlgoPerfType().memory) memory;
|
|
};
|
|
|
|
- lru_unordered_map<TensorShapeVector, PerfFwdResultParams, vector_hash> cached_benchmark_fwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
|
|
- lru_unordered_map<TensorShapeVector, PerfBwdResultParams, vector_hash> cached_benchmark_bwd_results{MAX_CACHED_ALGO_PERF_RESULTS};
|
|
-
|
|
// Some properties needed to support asymmetric padded Conv nodes
|
|
bool post_slicing_required;
|
|
TensorShapeVector slice_starts;
|
|
diff --git a/onnxruntime/core/providers/rocm/nn/conv_transpose.cc b/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
|
|
index 7447113fdf84..45ed4c8ac37a 100644
|
|
--- a/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
|
|
+++ b/onnxruntime/core/providers/rocm/nn/conv_transpose.cc
|
|
@@ -76,7 +76,6 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
|
|
|
|
if (w_dims_changed) {
|
|
s_.last_w_dims = gsl::make_span(w_dims);
|
|
- s_.cached_benchmark_bwd_results.clear();
|
|
}
|
|
|
|
ConvTransposeAttributes::Prepare p;
|
|
@@ -127,12 +126,13 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
|
|
|
|
y_data = reinterpret_cast<HipT*>(p.Y->MutableData<T>());
|
|
|
|
- if (!s_.cached_benchmark_bwd_results.contains(x_dims)) {
|
|
- IAllocatorUniquePtr<void> algo_search_workspace = GetScratchBuffer<void>(AlgoSearchWorkspaceSize, context->GetComputeStream());
|
|
-
|
|
- miopenConvAlgoPerf_t perf;
|
|
- int algo_count = 1;
|
|
- MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionBackwardDataAlgorithm(
|
|
+ }
|
|
+ // The following is required before calling convolution, we cannot cache the results
|
|
+ {
|
|
+ IAllocatorUniquePtr<void> algo_search_workspace = GetScratchBuffer<void>(AlgoSearchWorkspaceSize, context->GetComputeStream());
|
|
+ miopenConvAlgoPerf_t perf;
|
|
+ int algo_count = 1;
|
|
+ MIOPEN_RETURN_IF_ERROR(miopenFindConvolutionBackwardDataAlgorithm(
|
|
GetMiopenHandle(context),
|
|
s_.x_tensor,
|
|
x_data,
|
|
@@ -147,10 +147,7 @@ Status ConvTranspose<T, NHWC>::DoConvTranspose(OpKernelContext* context, bool dy
|
|
algo_search_workspace.get(),
|
|
AlgoSearchWorkspaceSize,
|
|
false));
|
|
- s_.cached_benchmark_bwd_results.insert(x_dims, {perf.bwd_data_algo, perf.memory});
|
|
- }
|
|
|
|
- const auto& perf = s_.cached_benchmark_bwd_results.at(x_dims);
|
|
s_.bwd_data_algo = perf.bwd_data_algo;
|
|
s_.workspace_bytes = perf.memory;
|
|
}
|