mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-03 19:17:11 -05:00 
			
		
		
		
	* basic refactor and styling * removed batching * module entrypoint * removed unused imports * model superclass, model cache now in app state * fixed cache dir and enforced abstract method --------- Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
		
			
				
	
	
		
			60 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import cv2
 | 
						|
from insightface.app import FaceAnalysis
 | 
						|
 | 
						|
from ..config import settings
 | 
						|
from ..schemas import ModelType
 | 
						|
from .base import InferenceModel
 | 
						|
 | 
						|
 | 
						|
class FaceRecognizer(InferenceModel):
 | 
						|
    _model_type = ModelType.FACIAL_RECOGNITION
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        model_name: str,
 | 
						|
        min_score: float = settings.min_face_score,
 | 
						|
        cache_dir: Path | None = None,
 | 
						|
        **model_kwargs,
 | 
						|
    ):
 | 
						|
        super().__init__(model_name, cache_dir)
 | 
						|
        self.min_score = min_score
 | 
						|
        model = FaceAnalysis(
 | 
						|
            name=self.model_name,
 | 
						|
            root=self.cache_dir.as_posix(),
 | 
						|
            allowed_modules=["detection", "recognition"],
 | 
						|
            **model_kwargs,
 | 
						|
        )
 | 
						|
        model.prepare(
 | 
						|
            ctx_id=0,
 | 
						|
            det_thresh=self.min_score,
 | 
						|
            det_size=(640, 640),
 | 
						|
        )
 | 
						|
        self.model = model
 | 
						|
 | 
						|
    def predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
 | 
						|
        height, width, _ = image.shape
 | 
						|
        results = []
 | 
						|
        faces = self.model.get(image)
 | 
						|
 | 
						|
        for face in faces:
 | 
						|
            x1, y1, x2, y2 = face.bbox
 | 
						|
 | 
						|
            results.append(
 | 
						|
                {
 | 
						|
                    "imageWidth": width,
 | 
						|
                    "imageHeight": height,
 | 
						|
                    "boundingBox": {
 | 
						|
                        "x1": round(x1),
 | 
						|
                        "y1": round(y1),
 | 
						|
                        "x2": round(x2),
 | 
						|
                        "y2": round(y2),
 | 
						|
                    },
 | 
						|
                    "score": face.det_score.item(),
 | 
						|
                    "embedding": face.normed_embedding.tolist(),
 | 
						|
                }
 | 
						|
            )
 | 
						|
        return results
 |