mirror of
				https://github.com/paperless-ngx/paperless-ngx.git
				synced 2025-10-31 02:27:10 -04:00 
			
		
		
		
	Merge branch 'machine-learning' into dev
This commit is contained in:
		
						commit
						46a5bc00d7
					
				
							
								
								
									
										0
									
								
								models/.keep
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								models/.keep
									
									
									
									
									
										Normal file
									
								
							| @ -239,9 +239,9 @@ def run_document_classifier_on_selected(modeladmin, request, queryset): | |||||||
|     n = queryset.count() |     n = queryset.count() | ||||||
|     if n: |     if n: | ||||||
|         for obj in queryset: |         for obj in queryset: | ||||||
|             clf.classify_document(obj, classify_correspondent=True, classify_tags=True, classify_type=True, replace_tags=True) |             clf.classify_document(obj, classify_correspondent=True, classify_tags=True, classify_document_type=True, replace_tags=True) | ||||||
|             modeladmin.log_change(request, obj, str(obj)) |             modeladmin.log_change(request, obj, str(obj)) | ||||||
|         modeladmin.message_user(request, "Successfully applied tags, correspondent and type to %(count)d %(items)s." % { |         modeladmin.message_user(request, "Successfully applied tags, correspondent and document type to %(count)d %(items)s." % { | ||||||
|             "count": n, "items": model_ngettext(modeladmin.opts, n) |             "count": n, "items": model_ngettext(modeladmin.opts, n) | ||||||
|         }, messages.SUCCESS) |         }, messages.SUCCESS) | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -12,6 +12,7 @@ class DocumentsConfig(AppConfig): | |||||||
|         from .signals import document_consumption_finished |         from .signals import document_consumption_finished | ||||||
|         from .signals.handlers import ( |         from .signals.handlers import ( | ||||||
|             classify_document, |             classify_document, | ||||||
|  |             add_inbox_tags, | ||||||
|             run_pre_consume_script, |             run_pre_consume_script, | ||||||
|             run_post_consume_script, |             run_post_consume_script, | ||||||
|             cleanup_document_deletion, |             cleanup_document_deletion, | ||||||
| @ -21,6 +22,7 @@ class DocumentsConfig(AppConfig): | |||||||
|         document_consumption_started.connect(run_pre_consume_script) |         document_consumption_started.connect(run_pre_consume_script) | ||||||
| 
 | 
 | ||||||
|         document_consumption_finished.connect(classify_document) |         document_consumption_finished.connect(classify_document) | ||||||
|  |         document_consumption_finished.connect(add_inbox_tags) | ||||||
|         document_consumption_finished.connect(set_log_entry) |         document_consumption_finished.connect(set_log_entry) | ||||||
|         document_consumption_finished.connect(run_post_consume_script) |         document_consumption_finished.connect(run_post_consume_script) | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -2,12 +2,12 @@ import logging | |||||||
| import os | import os | ||||||
| import pickle | import pickle | ||||||
| 
 | 
 | ||||||
|  | from sklearn.neural_network import MLPClassifier | ||||||
|  | 
 | ||||||
| from documents.models import Correspondent, DocumentType, Tag, Document | from documents.models import Correspondent, DocumentType, Tag, Document | ||||||
| from paperless import settings | from paperless import settings | ||||||
| 
 | 
 | ||||||
| from sklearn.feature_extraction.text import CountVectorizer | from sklearn.feature_extraction.text import CountVectorizer | ||||||
| from sklearn.multiclass import OneVsRestClassifier |  | ||||||
| from sklearn.naive_bayes import MultinomialNB |  | ||||||
| from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer | from sklearn.preprocessing import MultiLabelBinarizer, LabelBinarizer | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @ -29,11 +29,11 @@ class DocumentClassifier(object): | |||||||
| 
 | 
 | ||||||
|     tags_binarizer = None |     tags_binarizer = None | ||||||
|     correspondent_binarizer = None |     correspondent_binarizer = None | ||||||
|     type_binarizer = None |     document_type_binarizer = None | ||||||
| 
 | 
 | ||||||
|     tags_classifier = None |     tags_classifier = None | ||||||
|     correspondent_classifier = None |     correspondent_classifier = None | ||||||
|     type_classifier = None |     document_type_classifier = None | ||||||
| 
 | 
 | ||||||
|     @staticmethod |     @staticmethod | ||||||
|     def load_classifier(): |     def load_classifier(): | ||||||
| @ -48,11 +48,11 @@ class DocumentClassifier(object): | |||||||
|                 self.data_vectorizer = pickle.load(f) |                 self.data_vectorizer = pickle.load(f) | ||||||
|                 self.tags_binarizer = pickle.load(f) |                 self.tags_binarizer = pickle.load(f) | ||||||
|                 self.correspondent_binarizer = pickle.load(f) |                 self.correspondent_binarizer = pickle.load(f) | ||||||
|                 self.type_binarizer = pickle.load(f) |                 self.document_type_binarizer = pickle.load(f) | ||||||
| 
 | 
 | ||||||
|                 self.tags_classifier = pickle.load(f) |                 self.tags_classifier = pickle.load(f) | ||||||
|                 self.correspondent_classifier = pickle.load(f) |                 self.correspondent_classifier = pickle.load(f) | ||||||
|                 self.type_classifier = pickle.load(f) |                 self.document_type_classifier = pickle.load(f) | ||||||
|             self.classifier_version = os.path.getmtime(settings.MODEL_FILE) |             self.classifier_version = os.path.getmtime(settings.MODEL_FILE) | ||||||
| 
 | 
 | ||||||
|     def save_classifier(self): |     def save_classifier(self): | ||||||
| @ -61,33 +61,33 @@ class DocumentClassifier(object): | |||||||
| 
 | 
 | ||||||
|             pickle.dump(self.tags_binarizer, f) |             pickle.dump(self.tags_binarizer, f) | ||||||
|             pickle.dump(self.correspondent_binarizer, f) |             pickle.dump(self.correspondent_binarizer, f) | ||||||
|             pickle.dump(self.type_binarizer, f) |             pickle.dump(self.document_type_binarizer, f) | ||||||
| 
 | 
 | ||||||
|             pickle.dump(self.tags_classifier, f) |             pickle.dump(self.tags_classifier, f) | ||||||
|             pickle.dump(self.correspondent_classifier, f) |             pickle.dump(self.correspondent_classifier, f) | ||||||
|             pickle.dump(self.type_classifier, f) |             pickle.dump(self.document_type_classifier, f) | ||||||
| 
 | 
 | ||||||
|     def train(self): |     def train(self): | ||||||
|         data = list() |         data = list() | ||||||
|         labels_tags = list() |         labels_tags = list() | ||||||
|         labels_correspondent = list() |         labels_correspondent = list() | ||||||
|         labels_type = list() |         labels_document_type = list() | ||||||
| 
 | 
 | ||||||
|         # Step 1: Extract and preprocess training data from the database. |         # Step 1: Extract and preprocess training data from the database. | ||||||
|         logging.getLogger(__name__).info("Gathering data from database...") |         logging.getLogger(__name__).info("Gathering data from database...") | ||||||
|         for doc in Document.objects.exclude(tags__is_inbox_tag=True): |         for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||||
|             data.append(preprocess_content(doc.content)) |             data.append(preprocess_content(doc.content)) | ||||||
|             labels_type.append(doc.document_type.name if doc.document_type is not None and doc.document_type.automatic_classification else "-") |             labels_document_type.append(doc.document_type.id if doc.document_type is not None and doc.document_type.automatic_classification else -1) | ||||||
|             labels_correspondent.append(doc.correspondent.name if doc.correspondent is not None and doc.correspondent.automatic_classification else "-") |             labels_correspondent.append(doc.correspondent.id if doc.correspondent is not None and doc.correspondent.automatic_classification else -1) | ||||||
|             tags = [tag.name for tag in doc.tags.filter(automatic_classification=True)] |             tags = [tag.id for tag in doc.tags.filter(automatic_classification=True)] | ||||||
|             labels_tags.append(tags) |             labels_tags.append(tags) | ||||||
| 
 | 
 | ||||||
|         labels_tags_unique = set([tag for tags in labels_tags for tag in tags]) |         labels_tags_unique = set([tag for tags in labels_tags for tag in tags]) | ||||||
|         logging.getLogger(__name__).info("{} documents, {} tag(s) {}, {} correspondent(s) {}, {} type(s) {}.".format(len(data), len(labels_tags_unique), labels_tags_unique, len(set(labels_correspondent)), set(labels_correspondent), len(set(labels_type)), set(labels_type))) |         logging.getLogger(__name__).info("{} documents, {} tag(s), {} correspondent(s), {} document type(s).".format(len(data), len(labels_tags_unique), len(set(labels_correspondent)), len(set(labels_document_type)))) | ||||||
| 
 | 
 | ||||||
|         # Step 2: vectorize data |         # Step 2: vectorize data | ||||||
|         logging.getLogger(__name__).info("Vectorizing data...") |         logging.getLogger(__name__).info("Vectorizing data...") | ||||||
|         self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(2, 6), min_df=0.1) |         self.data_vectorizer = CountVectorizer(analyzer='char', ngram_range=(3, 5), min_df=0.1) | ||||||
|         data_vectorized = self.data_vectorizer.fit_transform(data) |         data_vectorized = self.data_vectorizer.fit_transform(data) | ||||||
| 
 | 
 | ||||||
|         self.tags_binarizer = MultiLabelBinarizer() |         self.tags_binarizer = MultiLabelBinarizer() | ||||||
| @ -96,13 +96,13 @@ class DocumentClassifier(object): | |||||||
|         self.correspondent_binarizer = LabelBinarizer() |         self.correspondent_binarizer = LabelBinarizer() | ||||||
|         labels_correspondent_vectorized = self.correspondent_binarizer.fit_transform(labels_correspondent) |         labels_correspondent_vectorized = self.correspondent_binarizer.fit_transform(labels_correspondent) | ||||||
| 
 | 
 | ||||||
|         self.type_binarizer = LabelBinarizer() |         self.document_type_binarizer = LabelBinarizer() | ||||||
|         labels_type_vectorized = self.type_binarizer.fit_transform(labels_type) |         labels_document_type_vectorized = self.document_type_binarizer.fit_transform(labels_document_type) | ||||||
| 
 | 
 | ||||||
|         # Step 3: train the classifiers |         # Step 3: train the classifiers | ||||||
|         if len(self.tags_binarizer.classes_) > 0: |         if len(self.tags_binarizer.classes_) > 0: | ||||||
|             logging.getLogger(__name__).info("Training tags classifier...") |             logging.getLogger(__name__).info("Training tags classifier...") | ||||||
|             self.tags_classifier = OneVsRestClassifier(MultinomialNB()) |             self.tags_classifier = MLPClassifier(verbose=True) | ||||||
|             self.tags_classifier.fit(data_vectorized, labels_tags_vectorized) |             self.tags_classifier.fit(data_vectorized, labels_tags_vectorized) | ||||||
|         else: |         else: | ||||||
|             self.tags_classifier = None |             self.tags_classifier = None | ||||||
| @ -110,45 +110,58 @@ class DocumentClassifier(object): | |||||||
| 
 | 
 | ||||||
|         if len(self.correspondent_binarizer.classes_) > 0: |         if len(self.correspondent_binarizer.classes_) > 0: | ||||||
|             logging.getLogger(__name__).info("Training correspondent classifier...") |             logging.getLogger(__name__).info("Training correspondent classifier...") | ||||||
|             self.correspondent_classifier = OneVsRestClassifier(MultinomialNB()) |             self.correspondent_classifier = MLPClassifier(verbose=True) | ||||||
|             self.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) |             self.correspondent_classifier.fit(data_vectorized, labels_correspondent_vectorized) | ||||||
|         else: |         else: | ||||||
|             self.correspondent_classifier = None |             self.correspondent_classifier = None | ||||||
|             logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") |             logging.getLogger(__name__).info("There are no correspondents. Not training correspondent classifier.") | ||||||
| 
 | 
 | ||||||
|         if len(self.type_binarizer.classes_) > 0: |         if len(self.document_type_binarizer.classes_) > 0: | ||||||
|             logging.getLogger(__name__).info("Training document type classifier...") |             logging.getLogger(__name__).info("Training document type classifier...") | ||||||
|             self.type_classifier = OneVsRestClassifier(MultinomialNB()) |             self.document_type_classifier = MLPClassifier(verbose=True) | ||||||
|             self.type_classifier.fit(data_vectorized, labels_type_vectorized) |             self.document_type_classifier.fit(data_vectorized, labels_document_type_vectorized) | ||||||
|         else: |         else: | ||||||
|             self.type_classifier = None |             self.document_type_classifier = None | ||||||
|             logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") |             logging.getLogger(__name__).info("There are no document types. Not training document type classifier.") | ||||||
| 
 | 
 | ||||||
|     def classify_document(self, document, classify_correspondent=False, classify_type=False, classify_tags=False, replace_tags=False): |     def classify_document(self, document, classify_correspondent=False, classify_document_type=False, classify_tags=False, replace_tags=False): | ||||||
|         X = self.data_vectorizer.transform([preprocess_content(document.content)]) |         X = self.data_vectorizer.transform([preprocess_content(document.content)]) | ||||||
| 
 | 
 | ||||||
|         update_fields=() |         update_fields=() | ||||||
| 
 | 
 | ||||||
|         if classify_correspondent and self.correspondent_classifier is not None: |         if classify_correspondent and self.correspondent_classifier is not None: | ||||||
|             y_correspondent = self.correspondent_classifier.predict(X) |             y_correspondent = self.correspondent_classifier.predict(X) | ||||||
|             correspondent = self.correspondent_binarizer.inverse_transform(y_correspondent)[0] |             correspondent_id = self.correspondent_binarizer.inverse_transform(y_correspondent)[0] | ||||||
|             print("Detected correspondent:", correspondent) |             try: | ||||||
|             document.correspondent = Correspondent.objects.filter(name=correspondent).first() |                 correspondent = Correspondent.objects.get(id=correspondent_id) if correspondent_id != -1 else None | ||||||
|             update_fields = update_fields + ("correspondent",) |                 logging.getLogger(__name__).info("Detected correspondent: {}".format(correspondent.name if correspondent else "-")) | ||||||
|  |                 document.correspondent = correspondent | ||||||
|  |                 update_fields = update_fields + ("correspondent",) | ||||||
|  |             except Correspondent.DoesNotExist: | ||||||
|  |                 logging.getLogger(__name__).warning("Detected correspondent with id {} does not exist anymore! Did you delete it?".format(correspondent_id)) | ||||||
| 
 | 
 | ||||||
|         if classify_type and self.type_classifier is not None: |         if classify_document_type and self.document_type_classifier is not None: | ||||||
|             y_type = self.type_classifier.predict(X) |             y_type = self.document_type_classifier.predict(X) | ||||||
|             type = self.type_binarizer.inverse_transform(y_type)[0] |             type_id = self.document_type_binarizer.inverse_transform(y_type)[0] | ||||||
|             print("Detected document type:", type) |             try: | ||||||
|             document.document_type = DocumentType.objects.filter(name=type).first() |                 document_type = DocumentType.objects.get(id=type_id) if type_id != -1 else None | ||||||
|             update_fields = update_fields + ("document_type",) |                 logging.getLogger(__name__).info("Detected document type: {}".format(document_type.name if document_type else "-")) | ||||||
|  |                 document.document_type = document_type | ||||||
|  |                 update_fields = update_fields + ("document_type",) | ||||||
|  |             except DocumentType.DoesNotExist: | ||||||
|  |                 logging.getLogger(__name__).warning("Detected document type with id {} does not exist anymore! Did you delete it?".format(type_id)) | ||||||
| 
 | 
 | ||||||
|         if classify_tags and self.tags_classifier is not None: |         if classify_tags and self.tags_classifier is not None: | ||||||
|             y_tags = self.tags_classifier.predict(X) |             y_tags = self.tags_classifier.predict(X) | ||||||
|             tags = self.tags_binarizer.inverse_transform(y_tags)[0] |             tags_ids = self.tags_binarizer.inverse_transform(y_tags)[0] | ||||||
|             print("Detected tags:", tags) |  | ||||||
|             if replace_tags: |             if replace_tags: | ||||||
|                 document.tags.clear() |                 document.tags.clear() | ||||||
|             document.tags.add(*[Tag.objects.filter(name=t).first() for t in tags]) |             for tag_id in tags_ids: | ||||||
|  |                 try: | ||||||
|  |                     tag = Tag.objects.get(id=tag_id) | ||||||
|  |                     document.tags.add(tag) | ||||||
|  |                     logging.getLogger(__name__).info("Detected tag: {}".format(tag.name)) | ||||||
|  |                 except Tag.DoesNotExist: | ||||||
|  |                     logging.getLogger(__name__).warning("Detected tag with id {} does not exist anymore! Did you delete it?".format(tag_id)) | ||||||
| 
 | 
 | ||||||
|         document.save(update_fields=update_fields) |         document.save(update_fields=update_fields) | ||||||
|  | |||||||
| @ -18,7 +18,7 @@ class Command(Renderable, BaseCommand): | |||||||
|         with open("dataset_tags.txt", "w") as f: |         with open("dataset_tags.txt", "w") as f: | ||||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): |             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||||
|                 labels = [] |                 labels = [] | ||||||
|                 for tag in doc.tags.all(): |                 for tag in doc.tags.filter(automatic_classification=True): | ||||||
|                     labels.append(tag.name) |                     labels.append(tag.name) | ||||||
|                 f.write(",".join(labels)) |                 f.write(",".join(labels)) | ||||||
|                 f.write(";") |                 f.write(";") | ||||||
| @ -27,14 +27,14 @@ class Command(Renderable, BaseCommand): | |||||||
| 
 | 
 | ||||||
|         with open("dataset_types.txt", "w") as f: |         with open("dataset_types.txt", "w") as f: | ||||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): |             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||||
|                 f.write(doc.document_type.name if doc.document_type is not None else "None") |                 f.write(doc.document_type.name if doc.document_type is not None and doc.document_type.automatic_classification else "-") | ||||||
|                 f.write(";") |                 f.write(";") | ||||||
|                 f.write(preprocess_content(doc.content)) |                 f.write(preprocess_content(doc.content)) | ||||||
|                 f.write("\n") |                 f.write("\n") | ||||||
| 
 | 
 | ||||||
|         with open("dataset_correspondents.txt", "w") as f: |         with open("dataset_correspondents.txt", "w") as f: | ||||||
|             for doc in Document.objects.exclude(tags__is_inbox_tag=True): |             for doc in Document.objects.exclude(tags__is_inbox_tag=True): | ||||||
|                 f.write(doc.correspondent.name if doc.correspondent is not None else "None") |                 f.write(doc.correspondent.name if doc.correspondent is not None and doc.correspondent.automatic_classification else "-") | ||||||
|                 f.write(";") |                 f.write(";") | ||||||
|                 f.write(preprocess_content(doc.content)) |                 f.write(preprocess_content(doc.content)) | ||||||
|                 f.write("\n") |                 f.write("\n") | ||||||
|  | |||||||
| @ -35,6 +35,10 @@ class Command(Renderable, BaseCommand): | |||||||
|             "-i", "--inbox-only", |             "-i", "--inbox-only", | ||||||
|             action="store_true" |             action="store_true" | ||||||
|         ) |         ) | ||||||
|  |         parser.add_argument( | ||||||
|  |             "-r", "--replace-tags", | ||||||
|  |             action="store_true" | ||||||
|  |         ) | ||||||
| 
 | 
 | ||||||
|     def handle(self, *args, **options): |     def handle(self, *args, **options): | ||||||
| 
 | 
 | ||||||
| @ -52,7 +56,6 @@ class Command(Renderable, BaseCommand): | |||||||
|             logging.getLogger(__name__).fatal("Cannot classify documents, classifier model file was not found.") |             logging.getLogger(__name__).fatal("Cannot classify documents, classifier model file was not found.") | ||||||
|             return |             return | ||||||
| 
 | 
 | ||||||
| 
 |  | ||||||
|         for document in documents: |         for document in documents: | ||||||
|             logging.getLogger(__name__).info("Processing document {}".format(document.title)) |             logging.getLogger(__name__).info("Processing document {}".format(document.title)) | ||||||
|             clf.classify_document(document, classify_type=options['type'], classify_tags=options['tags'], classify_correspondent=options['correspondent']) |             clf.classify_document(document, classify_document_type=options['type'], classify_tags=options['tags'], classify_correspondent=options['correspondent'], replace_tags=options['replace_tags']) | ||||||
|  | |||||||
| @ -9,7 +9,7 @@ from django.contrib.contenttypes.models import ContentType | |||||||
| from django.utils import timezone | from django.utils import timezone | ||||||
| 
 | 
 | ||||||
| from documents.classifier import DocumentClassifier | from documents.classifier import DocumentClassifier | ||||||
| from ..models import Correspondent, Document, Tag, DocumentType | from ..models import Document, Tag | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def logger(message, group): | def logger(message, group): | ||||||
| @ -23,11 +23,14 @@ def classify_document(sender, document=None, logging_group=None, **kwargs): | |||||||
|     global classifier |     global classifier | ||||||
|     try: |     try: | ||||||
|         classifier.reload() |         classifier.reload() | ||||||
|         classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_type=True) |         classifier.classify_document(document, classify_correspondent=True, classify_tags=True, classify_document_type=True) | ||||||
|     except FileNotFoundError: |     except FileNotFoundError: | ||||||
|         logging.getLogger(__name__).fatal("Cannot classify document, classifier model file was not found.") |         logging.getLogger(__name__).fatal("Cannot classify document, classifier model file was not found.") | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
|  | def add_inbox_tags(sender, document=None, logging_group=None, **kwargs): | ||||||
|  |     inbox_tags = Tag.objects.filter(is_inbox_tag=True) | ||||||
|  |     document.tags.add(*inbox_tags) | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| def run_pre_consume_script(sender, filename, **kwargs): | def run_pre_consume_script(sender, filename, **kwargs): | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user