paperless-ngx/src/paperless/tests/test_ai_classifier.py
2025-05-19 14:31:35 -07:00

118 lines
3.6 KiB
Python

import json
from unittest.mock import MagicMock
from unittest.mock import patch
import pytest
from django.test import override_settings
from documents.models import Document
from paperless.ai.ai_classifier import build_prompt_with_rag
from paperless.ai.ai_classifier import build_prompt_without_rag
from paperless.ai.ai_classifier import get_ai_document_classification
from paperless.ai.ai_classifier import parse_ai_response
@pytest.fixture
def mock_document():
return Document(filename="test.pdf", content="This is a test document content.")
@pytest.mark.django_db
@patch("paperless.ai.client.AIClient.run_llm_query")
@override_settings(
LLM_BACKEND="ollama",
LLM_MODEL="some_model",
)
def test_get_ai_document_classification_success(mock_run_llm_query, mock_document):
mock_run_llm_query.return_value.text = json.dumps(
{
"title": "Test Title",
"tags": ["test", "document"],
"correspondents": ["John Doe"],
"document_types": ["report"],
"storage_paths": ["Reports"],
"dates": ["2023-01-01"],
},
)
result = get_ai_document_classification(mock_document)
assert result["title"] == "Test Title"
assert result["tags"] == ["test", "document"]
assert result["correspondents"] == ["John Doe"]
assert result["document_types"] == ["report"]
assert result["storage_paths"] == ["Reports"]
assert result["dates"] == ["2023-01-01"]
@pytest.mark.django_db
@patch("paperless.ai.client.AIClient.run_llm_query")
def test_get_ai_document_classification_failure(mock_run_llm_query, mock_document):
mock_run_llm_query.side_effect = Exception("LLM query failed")
# assert raises an exception
with pytest.raises(Exception):
get_ai_document_classification(mock_document)
def test_parse_llm_classification_response_invalid_json():
mock_response = MagicMock()
mock_response.text = "Invalid JSON response"
result = parse_ai_response(mock_response)
assert result == {}
@pytest.mark.django_db
@patch("paperless.ai.client.AIClient.run_llm_query")
@patch("paperless.ai.ai_classifier.build_prompt_with_rag")
@override_settings(
LLM_EMBEDDING_BACKEND="huggingface",
LLM_EMBEDDING_MODEL="some_model",
LLM_BACKEND="ollama",
LLM_MODEL="some_model",
)
def test_use_rag_if_configured(
mock_build_prompt_with_rag,
mock_run_llm_query,
mock_document,
):
mock_build_prompt_with_rag.return_value = "Prompt with RAG"
mock_run_llm_query.return_value.text = json.dumps({})
get_ai_document_classification(mock_document)
mock_build_prompt_with_rag.assert_called_once()
@pytest.mark.django_db
@patch("paperless.ai.client.AIClient.run_llm_query")
@patch("paperless.ai.ai_classifier.build_prompt_without_rag")
@patch("paperless.config.AIConfig")
@override_settings(
LLM_BACKEND="ollama",
LLM_MODEL="some_model",
)
def test_use_without_rag_if_not_configured(
mock_ai_config,
mock_build_prompt_without_rag,
mock_run_llm_query,
mock_document,
):
mock_ai_config.llm_embedding_backend = None
mock_build_prompt_without_rag.return_value = "Prompt without RAG"
mock_run_llm_query.return_value.text = json.dumps({})
get_ai_document_classification(mock_document)
mock_build_prompt_without_rag.assert_called_once()
@override_settings(
LLM_BACKEND="ollama",
LLM_MODEL="some_model",
)
def test_prompt_with_without_rag(mock_document):
prompt = build_prompt_without_rag(mock_document)
assert "CONTEXT FROM SIMILAR DOCUMENTS:" not in prompt
prompt = build_prompt_with_rag(mock_document)
assert "CONTEXT FROM SIMILAR DOCUMENTS:" in prompt