mirror of
				https://github.com/searxng/searxng.git
				synced 2025-10-31 18:47:07 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			218 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			218 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # SPDX-License-Identifier: AGPL-3.0-or-later
 | |
| """This is the implementation of the Google Scholar engine.
 | |
| 
 | |
| Compared to other Google services the Scholar engine has a simple GET REST-API
 | |
| and there does not exists `async` API.  Even though the API slightly vintage we
 | |
| can make use of the :ref:`google API` to assemble the arguments of the GET
 | |
| request.
 | |
| """
 | |
| 
 | |
| from typing import TYPE_CHECKING
 | |
| from typing import Optional
 | |
| 
 | |
| from urllib.parse import urlencode
 | |
| from datetime import datetime
 | |
| from lxml import html
 | |
| 
 | |
| from searx.utils import (
 | |
|     eval_xpath,
 | |
|     eval_xpath_getindex,
 | |
|     eval_xpath_list,
 | |
|     extract_text,
 | |
| )
 | |
| 
 | |
| from searx.exceptions import SearxEngineCaptchaException
 | |
| 
 | |
| from searx.engines.google import fetch_traits  # pylint: disable=unused-import
 | |
| from searx.engines.google import (
 | |
|     get_google_info,
 | |
|     time_range_dict,
 | |
| )
 | |
| from searx.enginelib.traits import EngineTraits
 | |
| 
 | |
| if TYPE_CHECKING:
 | |
|     import logging
 | |
| 
 | |
|     logger: logging.Logger
 | |
| 
 | |
| traits: EngineTraits
 | |
| 
 | |
| # about
 | |
| about = {
 | |
|     "website": 'https://scholar.google.com',
 | |
|     "wikidata_id": 'Q494817',
 | |
|     "official_api_documentation": 'https://developers.google.com/custom-search',
 | |
|     "use_official_api": False,
 | |
|     "require_api_key": False,
 | |
|     "results": 'HTML',
 | |
| }
 | |
| 
 | |
| # engine dependent config
 | |
| categories = ['science', 'scientific publications']
 | |
| paging = True
 | |
| max_page = 50
 | |
| language_support = True
 | |
| time_range_support = True
 | |
| safesearch = False
 | |
| send_accept_language_header = True
 | |
| 
 | |
| 
 | |
| def time_range_args(params):
 | |
|     """Returns a dictionary with a time range arguments based on
 | |
|     ``params['time_range']``.
 | |
| 
 | |
|     Google Scholar supports a detailed search by year.  Searching by *last
 | |
|     month* or *last week* (as offered by SearXNG) is uncommon for scientific
 | |
|     publications and is not supported by Google Scholar.
 | |
| 
 | |
|     To limit the result list when the users selects a range, all the SearXNG
 | |
|     ranges (*day*, *week*, *month*, *year*) are mapped to *year*.  If no range
 | |
|     is set an empty dictionary of arguments is returned.  Example;  when
 | |
|     user selects a time range (current year minus one in 2022):
 | |
| 
 | |
|     .. code:: python
 | |
| 
 | |
|         { 'as_ylo' : 2021 }
 | |
| 
 | |
|     """
 | |
|     ret_val = {}
 | |
|     if params['time_range'] in time_range_dict:
 | |
|         ret_val['as_ylo'] = datetime.now().year - 1
 | |
|     return ret_val
 | |
| 
 | |
| 
 | |
| def detect_google_captcha(dom):
 | |
|     """In case of CAPTCHA Google Scholar open its own *not a Robot* dialog and is
 | |
|     not redirected to ``sorry.google.com``.
 | |
|     """
 | |
|     if eval_xpath(dom, "//form[@id='gs_captcha_f']"):
 | |
|         raise SearxEngineCaptchaException()
 | |
| 
 | |
| 
 | |
| def request(query, params):
 | |
|     """Google-Scholar search request"""
 | |
| 
 | |
|     google_info = get_google_info(params, traits)
 | |
|     # subdomain is: scholar.google.xy
 | |
|     google_info['subdomain'] = google_info['subdomain'].replace("www.", "scholar.")
 | |
| 
 | |
|     args = {
 | |
|         'q': query,
 | |
|         **google_info['params'],
 | |
|         'start': (params['pageno'] - 1) * 10,
 | |
|         'as_sdt': '2007',  # include patents / to disable set '0,5'
 | |
|         'as_vis': '0',  # include citations / to disable set '1'
 | |
|     }
 | |
|     args.update(time_range_args(params))
 | |
| 
 | |
|     params['url'] = 'https://' + google_info['subdomain'] + '/scholar?' + urlencode(args)
 | |
|     params['cookies'] = google_info['cookies']
 | |
|     params['headers'].update(google_info['headers'])
 | |
|     return params
 | |
| 
 | |
| 
 | |
| def parse_gs_a(text: Optional[str]):
 | |
|     """Parse the text written in green.
 | |
| 
 | |
|     Possible formats:
 | |
|     * "{authors} - {journal}, {year} - {publisher}"
 | |
|     * "{authors} - {year} - {publisher}"
 | |
|     * "{authors} - {publisher}"
 | |
|     """
 | |
|     if text is None or text == "":
 | |
|         return None, None, None, None
 | |
| 
 | |
|     s_text = text.split(' - ')
 | |
|     authors = s_text[0].split(', ')
 | |
|     publisher = s_text[-1]
 | |
|     if len(s_text) != 3:
 | |
|         return authors, None, publisher, None
 | |
| 
 | |
|     # the format is "{authors} - {journal}, {year} - {publisher}" or "{authors} - {year} - {publisher}"
 | |
|     # get journal and year
 | |
|     journal_year = s_text[1].split(', ')
 | |
|     # journal is optional and may contains some coma
 | |
|     if len(journal_year) > 1:
 | |
|         journal = ', '.join(journal_year[0:-1])
 | |
|         if journal == '…':
 | |
|             journal = None
 | |
|     else:
 | |
|         journal = None
 | |
|     # year
 | |
|     year = journal_year[-1]
 | |
|     try:
 | |
|         publishedDate = datetime.strptime(year.strip(), '%Y')
 | |
|     except ValueError:
 | |
|         publishedDate = None
 | |
|     return authors, journal, publisher, publishedDate
 | |
| 
 | |
| 
 | |
| def response(resp):  # pylint: disable=too-many-locals
 | |
|     """Parse response from Google Scholar"""
 | |
|     results = []
 | |
| 
 | |
|     # convert the text to dom
 | |
|     dom = html.fromstring(resp.text)
 | |
|     detect_google_captcha(dom)
 | |
| 
 | |
|     # parse results
 | |
|     for result in eval_xpath_list(dom, '//div[@data-rp]'):
 | |
| 
 | |
|         title = extract_text(eval_xpath(result, './/h3[1]//a'))
 | |
| 
 | |
|         if not title:
 | |
|             # this is a [ZITATION] block
 | |
|             continue
 | |
| 
 | |
|         pub_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
 | |
|         if pub_type:
 | |
|             pub_type = pub_type[1:-1].lower()
 | |
| 
 | |
|         url = eval_xpath_getindex(result, './/h3[1]//a/@href', 0)
 | |
|         content = extract_text(eval_xpath(result, './/div[@class="gs_rs"]'))
 | |
|         authors, journal, publisher, publishedDate = parse_gs_a(
 | |
|             extract_text(eval_xpath(result, './/div[@class="gs_a"]'))
 | |
|         )
 | |
|         if publisher in url:
 | |
|             publisher = None
 | |
| 
 | |
|         # cited by
 | |
|         comments = extract_text(eval_xpath(result, './/div[@class="gs_fl"]/a[starts-with(@href,"/scholar?cites=")]'))
 | |
| 
 | |
|         # link to the html or pdf document
 | |
|         html_url = None
 | |
|         pdf_url = None
 | |
|         doc_url = eval_xpath_getindex(result, './/div[@class="gs_or_ggsm"]/a/@href', 0, default=None)
 | |
|         doc_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
 | |
|         if doc_type == "[PDF]":
 | |
|             pdf_url = doc_url
 | |
|         else:
 | |
|             html_url = doc_url
 | |
| 
 | |
|         results.append(
 | |
|             {
 | |
|                 'template': 'paper.html',
 | |
|                 'type': pub_type,
 | |
|                 'url': url,
 | |
|                 'title': title,
 | |
|                 'authors': authors,
 | |
|                 'publisher': publisher,
 | |
|                 'journal': journal,
 | |
|                 'publishedDate': publishedDate,
 | |
|                 'content': content,
 | |
|                 'comments': comments,
 | |
|                 'html_url': html_url,
 | |
|                 'pdf_url': pdf_url,
 | |
|             }
 | |
|         )
 | |
| 
 | |
|     # parse suggestion
 | |
|     for suggestion in eval_xpath(dom, '//div[contains(@class, "gs_qsuggest_wrap")]//li//a'):
 | |
|         # append suggestion
 | |
|         results.append({'suggestion': extract_text(suggestion)})
 | |
| 
 | |
|     for correction in eval_xpath(dom, '//div[@class="gs_r gs_pda"]/a'):
 | |
|         results.append({'correction': extract_text(correction)})
 | |
| 
 | |
|     return results
 |