mirror of
				https://github.com/searxng/searxng.git
				synced 2025-11-03 19:17:07 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# SPDX-License-Identifier: AGPL-3.0-or-later
 | 
						|
""".. sidebar:: info
 | 
						|
 | 
						|
   - :origin:`meilisearch.py <searx/engines/meilisearch.py>`
 | 
						|
   - `MeiliSearch <https://www.meilisearch.com>`_
 | 
						|
   - `MeiliSearch Documentation <https://docs.meilisearch.com/>`_
 | 
						|
   - `Install MeiliSearch
 | 
						|
     <https://docs.meilisearch.com/learn/getting_started/installation.html>`_
 | 
						|
 | 
						|
MeiliSearch_ is aimed at individuals and small companies.  It is designed for
 | 
						|
small-scale (less than 10 million documents) data collections.  E.g. it is great
 | 
						|
for storing web pages you have visited and searching in the contents later.
 | 
						|
 | 
						|
The engine supports faceted search, so you can search in a subset of documents
 | 
						|
of the collection.  Furthermore, you can search in MeiliSearch_ instances that
 | 
						|
require authentication by setting ``auth_token``.
 | 
						|
 | 
						|
Example
 | 
						|
=======
 | 
						|
 | 
						|
Here is a simple example to query a Meilisearch instance:
 | 
						|
 | 
						|
.. code:: yaml
 | 
						|
 | 
						|
  - name: meilisearch
 | 
						|
    engine: meilisearch
 | 
						|
    shortcut: mes
 | 
						|
    base_url: http://localhost:7700
 | 
						|
    index: my-index
 | 
						|
    enable_http: true
 | 
						|
 | 
						|
"""
 | 
						|
 | 
						|
# pylint: disable=global-statement
 | 
						|
 | 
						|
from json import loads, dumps
 | 
						|
 | 
						|
 | 
						|
base_url = 'http://localhost:7700'
 | 
						|
index = ''
 | 
						|
auth_key = ''
 | 
						|
facet_filters = []
 | 
						|
_search_url = ''
 | 
						|
result_template = 'key-value.html'
 | 
						|
categories = ['general']
 | 
						|
paging = True
 | 
						|
 | 
						|
 | 
						|
def init(_):
 | 
						|
    if index == '':
 | 
						|
        raise ValueError('index cannot be empty')
 | 
						|
 | 
						|
    global _search_url
 | 
						|
    _search_url = base_url + '/indexes/' + index + '/search'
 | 
						|
 | 
						|
 | 
						|
def request(query, params):
 | 
						|
    if auth_key != '':
 | 
						|
        params['headers']['X-Meili-API-Key'] = auth_key
 | 
						|
 | 
						|
    params['headers']['Content-Type'] = 'application/json'
 | 
						|
    params['url'] = _search_url
 | 
						|
    params['method'] = 'POST'
 | 
						|
 | 
						|
    data = {
 | 
						|
        'q': query,
 | 
						|
        'offset': 10 * (params['pageno'] - 1),
 | 
						|
        'limit': 10,
 | 
						|
    }
 | 
						|
    if len(facet_filters) > 0:
 | 
						|
        data['facetFilters'] = facet_filters
 | 
						|
 | 
						|
    params['data'] = dumps(data)
 | 
						|
 | 
						|
    return params
 | 
						|
 | 
						|
 | 
						|
def response(resp):
 | 
						|
    results = []
 | 
						|
 | 
						|
    resp_json = loads(resp.text)
 | 
						|
    for result in resp_json['hits']:
 | 
						|
        r = {key: str(value) for key, value in result.items()}
 | 
						|
        r['template'] = result_template
 | 
						|
        results.append(r)
 | 
						|
 | 
						|
    return results
 |