forked from Cutlery/immich
157 lines
5.7 KiB
TypeScript
157 lines
5.7 KiB
TypeScript
import { Process, Processor } from '@nestjs/bull';
|
|
import { Job } from 'bull';
|
|
import { AssetEntity } from '@app/database/entities/asset.entity';
|
|
import { Repository } from 'typeorm/repository/Repository';
|
|
import { InjectRepository } from '@nestjs/typeorm';
|
|
import { ExifEntity } from '@app/database/entities/exif.entity';
|
|
import exifr from 'exifr';
|
|
import mapboxGeocoding, { GeocodeService } from '@mapbox/mapbox-sdk/services/geocoding';
|
|
import { MapiResponse } from '@mapbox/mapbox-sdk/lib/classes/mapi-response';
|
|
import { readFile } from 'fs/promises';
|
|
import { Logger } from '@nestjs/common';
|
|
import axios from 'axios';
|
|
import { SmartInfoEntity } from '@app/database/entities/smart-info.entity';
|
|
import ffmpeg from 'fluent-ffmpeg';
|
|
import path from 'path';
|
|
|
|
@Processor('metadata-extraction-queue')
|
|
export class MetadataExtractionProcessor {
|
|
private geocodingClient?: GeocodeService;
|
|
|
|
constructor(
|
|
@InjectRepository(AssetEntity)
|
|
private assetRepository: Repository<AssetEntity>,
|
|
|
|
@InjectRepository(ExifEntity)
|
|
private exifRepository: Repository<ExifEntity>,
|
|
|
|
@InjectRepository(SmartInfoEntity)
|
|
private smartInfoRepository: Repository<SmartInfoEntity>,
|
|
) {
|
|
if (process.env.ENABLE_MAPBOX == 'true' && process.env.MAPBOX_KEY) {
|
|
this.geocodingClient = mapboxGeocoding({
|
|
accessToken: process.env.MAPBOX_KEY,
|
|
});
|
|
}
|
|
}
|
|
|
|
@Process('exif-extraction')
|
|
async extractExifInfo(job: Job) {
|
|
try {
|
|
const { asset, fileName, fileSize }: { asset: AssetEntity; fileName: string; fileSize: number } = job.data;
|
|
|
|
const fileBuffer = await readFile(asset.originalPath);
|
|
|
|
const exifData = await exifr.parse(fileBuffer);
|
|
|
|
const newExif = new ExifEntity();
|
|
newExif.assetId = asset.id;
|
|
newExif.make = exifData['Make'] || null;
|
|
newExif.model = exifData['Model'] || null;
|
|
newExif.imageName = path.parse(fileName).name || null;
|
|
newExif.exifImageHeight = exifData['ExifImageHeight'] || null;
|
|
newExif.exifImageWidth = exifData['ExifImageWidth'] || null;
|
|
newExif.fileSizeInByte = fileSize || null;
|
|
newExif.orientation = exifData['Orientation'] || null;
|
|
newExif.dateTimeOriginal = exifData['DateTimeOriginal'] || null;
|
|
newExif.modifyDate = exifData['ModifyDate'] || null;
|
|
newExif.lensModel = exifData['LensModel'] || null;
|
|
newExif.fNumber = exifData['FNumber'] || null;
|
|
newExif.focalLength = exifData['FocalLength'] || null;
|
|
newExif.iso = exifData['ISO'] || null;
|
|
newExif.exposureTime = exifData['ExposureTime'] || null;
|
|
newExif.latitude = exifData['latitude'] || null;
|
|
newExif.longitude = exifData['longitude'] || null;
|
|
|
|
// Reverse GeoCoding
|
|
if (this.geocodingClient && exifData['longitude'] && exifData['latitude']) {
|
|
const geoCodeInfo: MapiResponse = await this.geocodingClient
|
|
.reverseGeocode({
|
|
query: [exifData['longitude'], exifData['latitude']],
|
|
types: ['country', 'region', 'place'],
|
|
})
|
|
.send();
|
|
|
|
const res: [] = geoCodeInfo.body['features'];
|
|
|
|
const city = res.filter((geoInfo) => geoInfo['place_type'][0] == 'place')[0]['text'];
|
|
const state = res.filter((geoInfo) => geoInfo['place_type'][0] == 'region')[0]['text'];
|
|
const country = res.filter((geoInfo) => geoInfo['place_type'][0] == 'country')[0]['text'];
|
|
|
|
newExif.city = city || null;
|
|
newExif.state = state || null;
|
|
newExif.country = country || null;
|
|
}
|
|
|
|
await this.exifRepository.save(newExif);
|
|
} catch (e) {
|
|
Logger.error(`Error extracting EXIF ${String(e)}`, 'extractExif');
|
|
}
|
|
}
|
|
|
|
@Process({ name: 'tag-image', concurrency: 2 })
|
|
async tagImage(job: Job) {
|
|
const { asset }: { asset: AssetEntity } = job.data;
|
|
|
|
const res = await axios.post('http://immich-machine-learning:3001/image-classifier/tag-image', {
|
|
thumbnailPath: asset.resizePath,
|
|
});
|
|
|
|
if (res.status == 201 && res.data.length > 0) {
|
|
const smartInfo = new SmartInfoEntity();
|
|
smartInfo.assetId = asset.id;
|
|
smartInfo.tags = [...res.data];
|
|
|
|
await this.smartInfoRepository.upsert(smartInfo, {
|
|
conflictPaths: ['assetId'],
|
|
});
|
|
}
|
|
}
|
|
|
|
@Process({ name: 'detect-object', concurrency: 2 })
|
|
async detectObject(job: Job) {
|
|
try {
|
|
const { asset }: { asset: AssetEntity } = job.data;
|
|
|
|
const res = await axios.post('http://immich-machine-learning:3001/object-detection/detect-object', {
|
|
thumbnailPath: asset.resizePath,
|
|
});
|
|
|
|
if (res.status == 201 && res.data.length > 0) {
|
|
const smartInfo = new SmartInfoEntity();
|
|
smartInfo.assetId = asset.id;
|
|
smartInfo.objects = [...res.data];
|
|
|
|
await this.smartInfoRepository.upsert(smartInfo, {
|
|
conflictPaths: ['assetId'],
|
|
});
|
|
}
|
|
} catch (error) {
|
|
Logger.error(`Failed to trigger object detection pipe line ${String(error)}`);
|
|
}
|
|
}
|
|
|
|
@Process({ name: 'extract-video-length', concurrency: 2 })
|
|
async extractVideoLength(job: Job) {
|
|
const { asset }: { asset: AssetEntity } = job.data;
|
|
|
|
ffmpeg.ffprobe(asset.originalPath, async (err, data) => {
|
|
if (!err) {
|
|
if (data.format.duration) {
|
|
const videoDurationInSecond = parseInt(data.format.duration.toString(), 0);
|
|
|
|
const hours = Math.floor(videoDurationInSecond / 3600);
|
|
const minutes = Math.floor((videoDurationInSecond - hours * 3600) / 60);
|
|
const seconds = videoDurationInSecond - hours * 3600 - minutes * 60;
|
|
|
|
const durationString = `${hours}:${minutes < 10 ? '0' + minutes.toString() : minutes}:${
|
|
seconds < 10 ? '0' + seconds.toString() : seconds
|
|
}.000000`;
|
|
|
|
await this.assetRepository.update({ id: asset.id }, { duration: durationString });
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|