forked from Cutlery/immich
		
	* update e2e * tokenizer tests * more tests, remove unnecessary code * fix e2e setting * add tests for loading model * update workflow * fixed test
		
			
				
	
	
		
			190 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			190 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| from abc import abstractmethod
 | |
| from functools import cached_property
 | |
| from io import BytesIO
 | |
| from pathlib import Path
 | |
| from typing import Any, Literal
 | |
| 
 | |
| import numpy as np
 | |
| from numpy.typing import NDArray
 | |
| from PIL import Image
 | |
| from tokenizers import Encoding, Tokenizer
 | |
| 
 | |
| from app.config import clean_name, log
 | |
| from app.models.transforms import crop, get_pil_resampling, normalize, resize, to_numpy
 | |
| from app.schemas import ModelType
 | |
| 
 | |
| from .base import InferenceModel
 | |
| 
 | |
| 
 | |
| class BaseCLIPEncoder(InferenceModel):
 | |
|     _model_type = ModelType.CLIP
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         model_name: str,
 | |
|         cache_dir: Path | str | None = None,
 | |
|         mode: Literal["text", "vision"] | None = None,
 | |
|         **model_kwargs: Any,
 | |
|     ) -> None:
 | |
|         self.mode = mode
 | |
|         super().__init__(model_name, cache_dir, **model_kwargs)
 | |
| 
 | |
|     def _load(self) -> None:
 | |
|         if self.mode == "text" or self.mode is None:
 | |
|             log.debug(f"Loading clip text model '{self.model_name}'")
 | |
|             self.text_model = self._make_session(self.textual_path)
 | |
|             log.debug(f"Loaded clip text model '{self.model_name}'")
 | |
| 
 | |
|         if self.mode == "vision" or self.mode is None:
 | |
|             log.debug(f"Loading clip vision model '{self.model_name}'")
 | |
|             self.vision_model = self._make_session(self.visual_path)
 | |
|             log.debug(f"Loaded clip vision model '{self.model_name}'")
 | |
| 
 | |
|     def _predict(self, image_or_text: Image.Image | str) -> NDArray[np.float32]:
 | |
|         if isinstance(image_or_text, bytes):
 | |
|             image_or_text = Image.open(BytesIO(image_or_text))
 | |
| 
 | |
|         match image_or_text:
 | |
|             case Image.Image():
 | |
|                 if self.mode == "text":
 | |
|                     raise TypeError("Cannot encode image as text-only model")
 | |
|                 outputs: NDArray[np.float32] = self.vision_model.run(None, self.transform(image_or_text))[0][0]
 | |
|             case str():
 | |
|                 if self.mode == "vision":
 | |
|                     raise TypeError("Cannot encode text as vision-only model")
 | |
|                 outputs = self.text_model.run(None, self.tokenize(image_or_text))[0][0]
 | |
|             case _:
 | |
|                 raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
 | |
| 
 | |
|         return outputs
 | |
| 
 | |
|     @abstractmethod
 | |
|     def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | |
|         pass
 | |
| 
 | |
|     @property
 | |
|     def textual_dir(self) -> Path:
 | |
|         return self.cache_dir / "textual"
 | |
| 
 | |
|     @property
 | |
|     def visual_dir(self) -> Path:
 | |
|         return self.cache_dir / "visual"
 | |
| 
 | |
|     @property
 | |
|     def model_cfg_path(self) -> Path:
 | |
|         return self.cache_dir / "config.json"
 | |
| 
 | |
|     @property
 | |
|     def textual_path(self) -> Path:
 | |
|         return self.textual_dir / f"model.{self.preferred_runtime}"
 | |
| 
 | |
|     @property
 | |
|     def visual_path(self) -> Path:
 | |
|         return self.visual_dir / f"model.{self.preferred_runtime}"
 | |
| 
 | |
|     @property
 | |
|     def tokenizer_file_path(self) -> Path:
 | |
|         return self.textual_dir / "tokenizer.json"
 | |
| 
 | |
|     @property
 | |
|     def tokenizer_cfg_path(self) -> Path:
 | |
|         return self.textual_dir / "tokenizer_config.json"
 | |
| 
 | |
|     @property
 | |
|     def preprocess_cfg_path(self) -> Path:
 | |
|         return self.visual_dir / "preprocess_cfg.json"
 | |
| 
 | |
|     @property
 | |
|     def cached(self) -> bool:
 | |
|         return self.textual_path.is_file() and self.visual_path.is_file()
 | |
| 
 | |
|     @cached_property
 | |
|     def model_cfg(self) -> dict[str, Any]:
 | |
|         log.debug(f"Loading model config for CLIP model '{self.model_name}'")
 | |
|         model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
 | |
|         log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
 | |
|         return model_cfg
 | |
| 
 | |
|     @cached_property
 | |
|     def tokenizer_file(self) -> dict[str, Any]:
 | |
|         log.debug(f"Loading tokenizer file for CLIP model '{self.model_name}'")
 | |
|         tokenizer_file: dict[str, Any] = json.load(self.tokenizer_file_path.open())
 | |
|         log.debug(f"Loaded tokenizer file for CLIP model '{self.model_name}'")
 | |
|         return tokenizer_file
 | |
| 
 | |
|     @cached_property
 | |
|     def tokenizer_cfg(self) -> dict[str, Any]:
 | |
|         log.debug(f"Loading tokenizer config for CLIP model '{self.model_name}'")
 | |
|         tokenizer_cfg: dict[str, Any] = json.load(self.tokenizer_cfg_path.open())
 | |
|         log.debug(f"Loaded tokenizer config for CLIP model '{self.model_name}'")
 | |
|         return tokenizer_cfg
 | |
| 
 | |
|     @cached_property
 | |
|     def preprocess_cfg(self) -> dict[str, Any]:
 | |
|         log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
 | |
|         preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
 | |
|         log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
 | |
|         return preprocess_cfg
 | |
| 
 | |
| 
 | |
| class OpenCLIPEncoder(BaseCLIPEncoder):
 | |
|     def __init__(
 | |
|         self,
 | |
|         model_name: str,
 | |
|         cache_dir: Path | str | None = None,
 | |
|         mode: Literal["text", "vision"] | None = None,
 | |
|         **model_kwargs: Any,
 | |
|     ) -> None:
 | |
|         super().__init__(clean_name(model_name), cache_dir, mode, **model_kwargs)
 | |
| 
 | |
|     def _load(self) -> None:
 | |
|         super()._load()
 | |
|         self._load_tokenizer()
 | |
| 
 | |
|         size: list[int] | int = self.preprocess_cfg["size"]
 | |
|         self.size = size[0] if isinstance(size, list) else size
 | |
| 
 | |
|         self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
 | |
|         self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
 | |
|         self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
 | |
| 
 | |
|     def _load_tokenizer(self) -> Tokenizer:
 | |
|         log.debug(f"Loading tokenizer for CLIP model '{self.model_name}'")
 | |
| 
 | |
|         text_cfg: dict[str, Any] = self.model_cfg["text_cfg"]
 | |
|         context_length: int = text_cfg.get("context_length", 77)
 | |
|         pad_token: str = self.tokenizer_cfg["pad_token"]
 | |
| 
 | |
|         self.tokenizer: Tokenizer = Tokenizer.from_file(self.tokenizer_file_path.as_posix())
 | |
| 
 | |
|         pad_id: int = self.tokenizer.token_to_id(pad_token)
 | |
|         self.tokenizer.enable_padding(length=context_length, pad_token=pad_token, pad_id=pad_id)
 | |
|         self.tokenizer.enable_truncation(max_length=context_length)
 | |
| 
 | |
|         log.debug(f"Loaded tokenizer for CLIP model '{self.model_name}'")
 | |
| 
 | |
|     def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
 | |
|         tokens: Encoding = self.tokenizer.encode(text)
 | |
|         return {"text": np.array([tokens.ids], dtype=np.int32)}
 | |
| 
 | |
|     def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | |
|         image = resize(image, self.size)
 | |
|         image = crop(image, self.size)
 | |
|         image_np = to_numpy(image)
 | |
|         image_np = normalize(image_np, self.mean, self.std)
 | |
|         return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
 | |
| 
 | |
| 
 | |
| class MCLIPEncoder(OpenCLIPEncoder):
 | |
|     def tokenize(self, text: str) -> dict[str, NDArray[np.int32]]:
 | |
|         tokens: Encoding = self.tokenizer.encode(text)
 | |
|         return {
 | |
|             "input_ids": np.array([tokens.ids], dtype=np.int32),
 | |
|             "attention_mask": np.array([tokens.attention_mask], dtype=np.int32),
 | |
|         }
 |