1
0
forked from Cutlery/immich
2024-03-31 23:51:02 -04:00

66 lines
2.3 KiB
Python

from pathlib import Path
from typing import Any
import cv2
import numpy as np
from insightface.model_zoo import ArcFaceONNX
from insightface.utils.face_align import norm_crop
from numpy.typing import NDArray
from app.config import clean_name
from app.models.transforms import crop_np, crop_bounding_box, resize_np
from app.schemas import DetectedFace, ModelTask, RecognizedFace, ModelSession, ModelType, is_ndarray
from ..base import InferenceModel
class FaceRecognizer(InferenceModel):
_model_task = ModelTask.FACIAL_RECOGNITION
_model_type = ModelType.RECOGNITION
def __init__(
self,
model_name: str,
min_score: float = 0.7,
cache_dir: Path | str | None = None,
**model_kwargs: Any,
) -> None:
self.min_score = model_kwargs.pop("minScore", min_score)
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
self.model = ArcFaceONNX(
self.model_path.with_suffix(".onnx").as_posix(),
session=session,
)
return session
# def _predict(self, img: Any, **kwargs: Any) -> Any:
def _predict(
self, inputs: NDArray[np.uint8] | bytes, faces: list[DetectedFace] = [], **kwargs: Any
) -> list[RecognizedFace]:
if isinstance(inputs, bytes):
decoded_image = cv2.imdecode(np.frombuffer(inputs, np.uint8), cv2.IMREAD_COLOR)
else:
decoded_image = inputs
assert is_ndarray(decoded_image, np.float32)
results: list[RecognizedFace] = []
for detected_face in faces:
landmarks = detected_face.get("landmarks", None)
if landmarks is not None:
cropped_img = norm_crop(decoded_image, np.asarray(landmarks))
else:
cropped_img = crop_bounding_box(decoded_image, detected_face["box"])
cropped_img = crop_np(resize_np(cropped_img, 112), 112)
assert is_ndarray(cropped_img, np.uint8)
embedding = self.model.get_feat(cropped_img)[0]
assert is_ndarray(embedding, np.float32)
face: RecognizedFace = {"box": detected_face["box"], "embedding": embedding}
results.append(face)
return results