forked from Cutlery/immich
		
	* fixed `minScore` not being set correctly * apply to init * don't send `enabled` * fix eslint warning * added logger * added logging * refinements * enable access log for info level * formatting * merged strings --------- Co-authored-by: Alex <alex.tran1502@gmail.com>
		
			
				
	
	
		
			149 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import zipfile
 | 
						|
from io import BytesIO
 | 
						|
from typing import Any, Literal
 | 
						|
 | 
						|
import onnxruntime as ort
 | 
						|
import torch
 | 
						|
from clip_server.model.clip import BICUBIC, _convert_image_to_rgb
 | 
						|
from clip_server.model.clip_onnx import _MODELS, _S3_BUCKET_V2, CLIPOnnxModel, download_model
 | 
						|
from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE
 | 
						|
from clip_server.model.tokenization import Tokenizer
 | 
						|
from PIL import Image
 | 
						|
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
 | 
						|
 | 
						|
from ..config import log
 | 
						|
from ..schemas import ModelType
 | 
						|
from .base import InferenceModel
 | 
						|
 | 
						|
_ST_TO_JINA_MODEL_NAME = {
 | 
						|
    "clip-ViT-B-16": "ViT-B-16::openai",
 | 
						|
    "clip-ViT-B-32": "ViT-B-32::openai",
 | 
						|
    "clip-ViT-B-32-multilingual-v1": "M-CLIP/XLM-Roberta-Large-Vit-B-32",
 | 
						|
    "clip-ViT-L-14": "ViT-L-14::openai",
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
class CLIPEncoder(InferenceModel):
 | 
						|
    _model_type = ModelType.CLIP
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        model_name: str,
 | 
						|
        cache_dir: str | None = None,
 | 
						|
        mode: Literal["text", "vision"] | None = None,
 | 
						|
        **model_kwargs: Any,
 | 
						|
    ) -> None:
 | 
						|
        if mode is not None and mode not in ("text", "vision"):
 | 
						|
            raise ValueError(f"Mode must be 'text', 'vision', or omitted; got '{mode}'")
 | 
						|
        if "vit-b" not in model_name.lower():
 | 
						|
            raise ValueError(f"Only ViT-B models are currently supported; got '{model_name}'")
 | 
						|
        self.mode = mode
 | 
						|
        jina_model_name = self._get_jina_model_name(model_name)
 | 
						|
        super().__init__(jina_model_name, cache_dir, **model_kwargs)
 | 
						|
 | 
						|
    def _download(self, **model_kwargs: Any) -> None:
 | 
						|
        models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
 | 
						|
        text_onnx_path = self.cache_dir / "textual.onnx"
 | 
						|
        vision_onnx_path = self.cache_dir / "visual.onnx"
 | 
						|
 | 
						|
        if not text_onnx_path.is_file():
 | 
						|
            self._download_model(*models[0])
 | 
						|
 | 
						|
        if not vision_onnx_path.is_file():
 | 
						|
            self._download_model(*models[1])
 | 
						|
 | 
						|
    def _load(self, **model_kwargs: Any) -> None:
 | 
						|
        if self.mode == "text" or self.mode is None:
 | 
						|
            self.text_model = ort.InferenceSession(
 | 
						|
                self.cache_dir / "textual.onnx",
 | 
						|
                sess_options=self.sess_options,
 | 
						|
                providers=self.providers,
 | 
						|
                provider_options=self.provider_options,
 | 
						|
            )
 | 
						|
            self.text_outputs = [output.name for output in self.text_model.get_outputs()]
 | 
						|
            self.tokenizer = Tokenizer(self.model_name)
 | 
						|
 | 
						|
        if self.mode == "vision" or self.mode is None:
 | 
						|
            self.vision_model = ort.InferenceSession(
 | 
						|
                self.cache_dir / "visual.onnx",
 | 
						|
                sess_options=self.sess_options,
 | 
						|
                providers=self.providers,
 | 
						|
                provider_options=self.provider_options,
 | 
						|
            )
 | 
						|
            self.vision_outputs = [output.name for output in self.vision_model.get_outputs()]
 | 
						|
 | 
						|
            image_size = _VISUAL_MODEL_IMAGE_SIZE[CLIPOnnxModel.get_model_name(self.model_name)]
 | 
						|
            self.transform = _transform_pil_image(image_size)
 | 
						|
 | 
						|
    def _predict(self, image_or_text: Image.Image | str) -> list[float]:
 | 
						|
        if isinstance(image_or_text, bytes):
 | 
						|
            image_or_text = Image.open(BytesIO(image_or_text))
 | 
						|
 | 
						|
        match image_or_text:
 | 
						|
            case Image.Image():
 | 
						|
                if self.mode == "text":
 | 
						|
                    raise TypeError("Cannot encode image as text-only model")
 | 
						|
                pixel_values = self.transform(image_or_text)
 | 
						|
                assert isinstance(pixel_values, torch.Tensor)
 | 
						|
                pixel_values = torch.unsqueeze(pixel_values, 0).numpy()
 | 
						|
                outputs = self.vision_model.run(self.vision_outputs, {"pixel_values": pixel_values})
 | 
						|
            case str():
 | 
						|
                if self.mode == "vision":
 | 
						|
                    raise TypeError("Cannot encode text as vision-only model")
 | 
						|
                text_inputs: dict[str, torch.Tensor] = self.tokenizer(image_or_text)
 | 
						|
                inputs = {
 | 
						|
                    "input_ids": text_inputs["input_ids"].int().numpy(),
 | 
						|
                    "attention_mask": text_inputs["attention_mask"].int().numpy(),
 | 
						|
                }
 | 
						|
                outputs = self.text_model.run(self.text_outputs, inputs)
 | 
						|
            case _:
 | 
						|
                raise TypeError(f"Expected Image or str, but got: {type(image_or_text)}")
 | 
						|
 | 
						|
        return outputs[0][0].tolist()
 | 
						|
 | 
						|
    def _get_jina_model_name(self, model_name: str) -> str:
 | 
						|
        if model_name in _MODELS:
 | 
						|
            return model_name
 | 
						|
        elif model_name in _ST_TO_JINA_MODEL_NAME:
 | 
						|
            log.warn(
 | 
						|
                (
 | 
						|
                    f"Sentence-Transformer models like '{model_name}' are not supported."
 | 
						|
                    f"Using '{_ST_TO_JINA_MODEL_NAME[model_name]}' instead as it is the best match for '{model_name}'."
 | 
						|
                ),
 | 
						|
            )
 | 
						|
            return _ST_TO_JINA_MODEL_NAME[model_name]
 | 
						|
        else:
 | 
						|
            raise ValueError(f"Unknown model name {model_name}.")
 | 
						|
 | 
						|
    def _download_model(self, model_name: str, model_md5: str) -> bool:
 | 
						|
        # downloading logic is adapted from clip-server's CLIPOnnxModel class
 | 
						|
        download_model(
 | 
						|
            url=_S3_BUCKET_V2 + model_name,
 | 
						|
            target_folder=self.cache_dir.as_posix(),
 | 
						|
            md5sum=model_md5,
 | 
						|
            with_resume=True,
 | 
						|
        )
 | 
						|
        file = self.cache_dir / model_name.split("/")[1]
 | 
						|
        if file.suffix == ".zip":
 | 
						|
            with zipfile.ZipFile(file, "r") as zip_ref:
 | 
						|
                zip_ref.extractall(self.cache_dir)
 | 
						|
            os.remove(file)
 | 
						|
        return True
 | 
						|
 | 
						|
 | 
						|
# same as `_transform_blob` without `_blob2image`
 | 
						|
def _transform_pil_image(n_px: int) -> Compose:
 | 
						|
    return Compose(
 | 
						|
        [
 | 
						|
            Resize(n_px, interpolation=BICUBIC),
 | 
						|
            CenterCrop(n_px),
 | 
						|
            _convert_image_to_rgb,
 | 
						|
            ToTensor(),
 | 
						|
            Normalize(
 | 
						|
                (0.48145466, 0.4578275, 0.40821073),
 | 
						|
                (0.26862954, 0.26130258, 0.27577711),
 | 
						|
            ),
 | 
						|
        ]
 | 
						|
    )
 |