mirror of
https://github.com/immich-app/immich.git
synced 2025-11-25 08:07:38 -05:00
* turn it off and back on * handle missing smart search embedding column * handle missing face embedding column * simplify * Revert "simplify" This reverts commit 8322af0baf2be8d59f868db9868b9694f999e615. * fix migration
80 lines
3.3 KiB
TypeScript
80 lines
3.3 KiB
TypeScript
import { getVectorExtension } from 'src/database.config';
|
|
import { DatabaseExtension } from 'src/interfaces/database.interface';
|
|
import { MigrationInterface, QueryRunner } from 'typeorm';
|
|
|
|
export class AddFaceSearchRelation1718486162779 implements MigrationInterface {
|
|
public async up(queryRunner: QueryRunner): Promise<void> {
|
|
if (getVectorExtension() === DatabaseExtension.VECTORS) {
|
|
await queryRunner.query(`SET search_path TO "$user", public, vectors`);
|
|
await queryRunner.query(`SET vectors.pgvector_compatibility=on`);
|
|
}
|
|
|
|
const hasEmbeddings = async (tableName: string): Promise<boolean> => {
|
|
const columns = await queryRunner.query(
|
|
`SELECT column_name as name
|
|
FROM information_schema.columns
|
|
WHERE table_name = '${tableName}'`);
|
|
return columns.some((column: { name: string }) => column.name === 'embedding');
|
|
}
|
|
|
|
const hasAssetEmbeddings = await hasEmbeddings('smart_search');
|
|
if (!hasAssetEmbeddings) {
|
|
await queryRunner.query(`TRUNCATE smart_search`);
|
|
await queryRunner.query(`ALTER TABLE smart_search ADD COLUMN IF NOT EXISTS embedding vector(512) NOT NULL`);
|
|
}
|
|
|
|
await queryRunner.query(`
|
|
CREATE TABLE face_search (
|
|
"faceId" uuid PRIMARY KEY REFERENCES asset_faces(id) ON DELETE CASCADE,
|
|
embedding vector(512) NOT NULL )`);
|
|
|
|
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE EXTERNAL`);
|
|
await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE EXTERNAL`);
|
|
|
|
const hasFaceEmbeddings = await hasEmbeddings('asset_faces')
|
|
if (hasFaceEmbeddings) {
|
|
await queryRunner.query(`
|
|
INSERT INTO face_search("faceId", embedding)
|
|
SELECT id, embedding
|
|
FROM asset_faces faces`);
|
|
}
|
|
|
|
await queryRunner.query(`ALTER TABLE asset_faces DROP COLUMN IF EXISTS embedding`);
|
|
|
|
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET DATA TYPE real[]`);
|
|
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET DATA TYPE vector(512)`);
|
|
|
|
await queryRunner.query(`
|
|
CREATE INDEX IF NOT EXISTS clip_index ON smart_search
|
|
USING hnsw (embedding vector_cosine_ops)
|
|
WITH (ef_construction = 300, m = 16)`);
|
|
|
|
await queryRunner.query(`
|
|
CREATE INDEX face_index ON face_search
|
|
USING hnsw (embedding vector_cosine_ops)
|
|
WITH (ef_construction = 300, m = 16)`);
|
|
}
|
|
|
|
public async down(queryRunner: QueryRunner): Promise<void> {
|
|
if (getVectorExtension() === DatabaseExtension.VECTORS) {
|
|
await queryRunner.query(`SET search_path TO "$user", public, vectors`);
|
|
await queryRunner.query(`SET vectors.pgvector_compatibility=on`);
|
|
}
|
|
|
|
await queryRunner.query(`ALTER TABLE asset_faces ADD COLUMN "embedding" vector(512)`);
|
|
await queryRunner.query(`ALTER TABLE face_search ALTER COLUMN embedding SET STORAGE DEFAULT`);
|
|
await queryRunner.query(`ALTER TABLE smart_search ALTER COLUMN embedding SET STORAGE DEFAULT`);
|
|
await queryRunner.query(`
|
|
UPDATE asset_faces
|
|
SET embedding = fs.embedding
|
|
FROM face_search fs
|
|
WHERE id = fs."faceId"`);
|
|
await queryRunner.query(`DROP TABLE face_search`);
|
|
|
|
await queryRunner.query(`
|
|
CREATE INDEX face_index ON asset_faces
|
|
USING hnsw (embedding vector_cosine_ops)
|
|
WITH (ef_construction = 300, m = 16)`);
|
|
}
|
|
}
|