mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-30 18:35:00 -04:00 
			
		
		
		
	* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
		
			
				
	
	
		
			70 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			70 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| from abc import abstractmethod
 | |
| from functools import cached_property
 | |
| from pathlib import Path
 | |
| from typing import Any
 | |
| 
 | |
| import numpy as np
 | |
| from numpy.typing import NDArray
 | |
| from PIL import Image
 | |
| 
 | |
| from app.config import log
 | |
| from app.models.base import InferenceModel
 | |
| from app.models.transforms import crop_pil, decode_pil, get_pil_resampling, normalize, resize_pil, to_numpy
 | |
| from app.schemas import ModelSession, ModelTask, ModelType
 | |
| 
 | |
| 
 | |
| class BaseCLIPVisualEncoder(InferenceModel):
 | |
|     depends = []
 | |
|     identity = (ModelType.VISUAL, ModelTask.SEARCH)
 | |
| 
 | |
|     def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> NDArray[np.float32]:
 | |
|         image = decode_pil(inputs)
 | |
|         res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
 | |
|         return res
 | |
| 
 | |
|     @abstractmethod
 | |
|     def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | |
|         pass
 | |
| 
 | |
|     @property
 | |
|     def model_cfg_path(self) -> Path:
 | |
|         return self.cache_dir / "config.json"
 | |
| 
 | |
|     @property
 | |
|     def preprocess_cfg_path(self) -> Path:
 | |
|         return self.model_dir / "preprocess_cfg.json"
 | |
| 
 | |
|     @cached_property
 | |
|     def model_cfg(self) -> dict[str, Any]:
 | |
|         log.debug(f"Loading model config for CLIP model '{self.model_name}'")
 | |
|         model_cfg: dict[str, Any] = json.load(self.model_cfg_path.open())
 | |
|         log.debug(f"Loaded model config for CLIP model '{self.model_name}'")
 | |
|         return model_cfg
 | |
| 
 | |
|     @cached_property
 | |
|     def preprocess_cfg(self) -> dict[str, Any]:
 | |
|         log.debug(f"Loading visual preprocessing config for CLIP model '{self.model_name}'")
 | |
|         preprocess_cfg: dict[str, Any] = json.load(self.preprocess_cfg_path.open())
 | |
|         log.debug(f"Loaded visual preprocessing config for CLIP model '{self.model_name}'")
 | |
|         return preprocess_cfg
 | |
| 
 | |
| 
 | |
| class OpenClipVisualEncoder(BaseCLIPVisualEncoder):
 | |
|     def _load(self) -> ModelSession:
 | |
|         size: list[int] | int = self.preprocess_cfg["size"]
 | |
|         self.size = size[0] if isinstance(size, list) else size
 | |
| 
 | |
|         self.resampling = get_pil_resampling(self.preprocess_cfg["interpolation"])
 | |
|         self.mean = np.array(self.preprocess_cfg["mean"], dtype=np.float32)
 | |
|         self.std = np.array(self.preprocess_cfg["std"], dtype=np.float32)
 | |
| 
 | |
|         return super()._load()
 | |
| 
 | |
|     def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
 | |
|         image = resize_pil(image, self.size)
 | |
|         image = crop_pil(image, self.size)
 | |
|         image_np = to_numpy(image)
 | |
|         image_np = normalize(image_np, self.mean, self.std)
 | |
|         return {"image": np.expand_dims(image_np.transpose(2, 0, 1), 0)}
 |