mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-04 03:39:37 -05:00 
			
		
		
		
	* add cache_dir option to OpenVINO EP * update provider options test to include cache_dir * use forward slash instead of string concatenation * fix cache_dir placement in provider options assertion
		
			
				
	
	
		
			649 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import json
 | 
						|
import os
 | 
						|
from io import BytesIO
 | 
						|
from pathlib import Path
 | 
						|
from random import randint
 | 
						|
from types import SimpleNamespace
 | 
						|
from typing import Any, Callable
 | 
						|
from unittest import mock
 | 
						|
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
import onnxruntime as ort
 | 
						|
import pytest
 | 
						|
from fastapi.testclient import TestClient
 | 
						|
from PIL import Image
 | 
						|
from pytest import MonkeyPatch
 | 
						|
from pytest_mock import MockerFixture
 | 
						|
 | 
						|
from app.main import load, preload_models
 | 
						|
 | 
						|
from .config import Settings, log, settings
 | 
						|
from .models.base import InferenceModel
 | 
						|
from .models.cache import ModelCache
 | 
						|
from .models.clip import MCLIPEncoder, OpenCLIPEncoder
 | 
						|
from .models.facial_recognition import FaceRecognizer
 | 
						|
from .schemas import ModelRuntime, ModelType
 | 
						|
 | 
						|
 | 
						|
class TestBase:
 | 
						|
    CPU_EP = ["CPUExecutionProvider"]
 | 
						|
    CUDA_EP = ["CUDAExecutionProvider", "CPUExecutionProvider"]
 | 
						|
    OV_EP = ["OpenVINOExecutionProvider", "CPUExecutionProvider"]
 | 
						|
    CUDA_EP_OUT_OF_ORDER = ["CPUExecutionProvider", "CUDAExecutionProvider"]
 | 
						|
    TRT_EP = ["TensorrtExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"]
 | 
						|
 | 
						|
    @pytest.mark.providers(CPU_EP)
 | 
						|
    def test_sets_cpu_provider(self, providers: list[str]) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.providers == self.CPU_EP
 | 
						|
 | 
						|
    @pytest.mark.providers(CUDA_EP)
 | 
						|
    def test_sets_cuda_provider_if_available(self, providers: list[str]) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.providers == self.CUDA_EP
 | 
						|
 | 
						|
    @pytest.mark.providers(OV_EP)
 | 
						|
    def test_sets_openvino_provider_if_available(self, providers: list[str], mocker: MockerFixture) -> None:
 | 
						|
        mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
 | 
						|
        mocked.get_available_openvino_device_ids.return_value = ["GPU.0", "CPU"]
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.providers == self.OV_EP
 | 
						|
 | 
						|
    @pytest.mark.providers(OV_EP)
 | 
						|
    def test_avoids_openvino_if_gpu_not_available(self, providers: list[str], mocker: MockerFixture) -> None:
 | 
						|
        mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
 | 
						|
        mocked.get_available_openvino_device_ids.return_value = ["CPU"]
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.providers == self.CPU_EP
 | 
						|
 | 
						|
    @pytest.mark.providers(CUDA_EP_OUT_OF_ORDER)
 | 
						|
    def test_sets_providers_in_correct_order(self, providers: list[str]) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.providers == self.CUDA_EP
 | 
						|
 | 
						|
    @pytest.mark.providers(TRT_EP)
 | 
						|
    def test_ignores_unsupported_providers(self, providers: list[str]) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.providers == self.CUDA_EP
 | 
						|
 | 
						|
    def test_sets_provider_kwarg(self) -> None:
 | 
						|
        providers = ["CUDAExecutionProvider"]
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=providers)
 | 
						|
 | 
						|
        assert encoder.providers == providers
 | 
						|
 | 
						|
    def test_sets_default_provider_options(self, mocker: MockerFixture) -> None:
 | 
						|
        mocked = mocker.patch("app.models.base.ort.capi._pybind_state")
 | 
						|
        mocked.get_available_openvino_device_ids.return_value = ["GPU.0", "CPU"]
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"])
 | 
						|
 | 
						|
        assert encoder.provider_options == [
 | 
						|
            {"device_type": "GPU_FP32", "cache_dir": (encoder.cache_dir / "openvino").as_posix()},
 | 
						|
            {"arena_extend_strategy": "kSameAsRequested"},
 | 
						|
        ]
 | 
						|
 | 
						|
    def test_sets_provider_options_kwarg(self) -> None:
 | 
						|
        encoder = OpenCLIPEncoder(
 | 
						|
            "ViT-B-32__openai",
 | 
						|
            providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
 | 
						|
            provider_options=[],
 | 
						|
        )
 | 
						|
 | 
						|
        assert encoder.provider_options == []
 | 
						|
 | 
						|
    def test_sets_default_sess_options(self) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.sess_options.execution_mode == ort.ExecutionMode.ORT_SEQUENTIAL
 | 
						|
        assert encoder.sess_options.inter_op_num_threads == 1
 | 
						|
        assert encoder.sess_options.intra_op_num_threads == 2
 | 
						|
        assert encoder.sess_options.enable_cpu_mem_arena is False
 | 
						|
 | 
						|
    def test_sets_default_sess_options_does_not_set_threads_if_non_cpu_and_default_threads(self) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
 | 
						|
 | 
						|
        assert encoder.sess_options.inter_op_num_threads == 0
 | 
						|
        assert encoder.sess_options.intra_op_num_threads == 0
 | 
						|
 | 
						|
    def test_sets_default_sess_options_sets_threads_if_non_cpu_and_set_threads(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_settings = mocker.patch("app.models.base.settings", autospec=True)
 | 
						|
        mock_settings.model_inter_op_threads = 2
 | 
						|
        mock_settings.model_intra_op_threads = 4
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", providers=["CUDAExecutionProvider", "CPUExecutionProvider"])
 | 
						|
 | 
						|
        assert encoder.sess_options.inter_op_num_threads == 2
 | 
						|
        assert encoder.sess_options.intra_op_num_threads == 4
 | 
						|
 | 
						|
    def test_sets_sess_options_kwarg(self) -> None:
 | 
						|
        sess_options = ort.SessionOptions()
 | 
						|
        encoder = OpenCLIPEncoder(
 | 
						|
            "ViT-B-32__openai",
 | 
						|
            providers=["OpenVINOExecutionProvider", "CPUExecutionProvider"],
 | 
						|
            provider_options=[],
 | 
						|
            sess_options=sess_options,
 | 
						|
        )
 | 
						|
 | 
						|
        assert sess_options is encoder.sess_options
 | 
						|
 | 
						|
    def test_sets_default_cache_dir(self) -> None:
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.cache_dir == Path(settings.cache_folder) / "clip" / "ViT-B-32__openai"
 | 
						|
 | 
						|
    def test_sets_cache_dir_kwarg(self) -> None:
 | 
						|
        cache_dir = Path("/test_cache")
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
 | 
						|
 | 
						|
        assert encoder.cache_dir == cache_dir
 | 
						|
 | 
						|
    def test_sets_default_preferred_runtime(self, mocker: MockerFixture) -> None:
 | 
						|
        mocker.patch.object(settings, "ann", True)
 | 
						|
        mocker.patch("ann.ann.is_available", False)
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.preferred_runtime == ModelRuntime.ONNX
 | 
						|
 | 
						|
    def test_sets_default_preferred_runtime_to_armnn_if_available(self, mocker: MockerFixture) -> None:
 | 
						|
        mocker.patch.object(settings, "ann", True)
 | 
						|
        mocker.patch("ann.ann.is_available", True)
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
 | 
						|
        assert encoder.preferred_runtime == ModelRuntime.ARMNN
 | 
						|
 | 
						|
    def test_sets_preferred_runtime_kwarg(self, mocker: MockerFixture) -> None:
 | 
						|
        mocker.patch.object(settings, "ann", False)
 | 
						|
        mocker.patch("ann.ann.is_available", False)
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", preferred_runtime=ModelRuntime.ARMNN)
 | 
						|
 | 
						|
        assert encoder.preferred_runtime == ModelRuntime.ARMNN
 | 
						|
 | 
						|
    def test_casts_cache_dir_string_to_path(self) -> None:
 | 
						|
        cache_dir = "/test_cache"
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=cache_dir)
 | 
						|
 | 
						|
        assert encoder.cache_dir == Path(cache_dir)
 | 
						|
 | 
						|
    def test_clear_cache(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
 | 
						|
        mock_rmtree.avoids_symlink_attacks = True
 | 
						|
        mock_cache_dir = mocker.Mock()
 | 
						|
        mock_cache_dir.exists.return_value = True
 | 
						|
        mock_cache_dir.is_dir.return_value = True
 | 
						|
        mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
 | 
						|
        info = mocker.spy(log, "info")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
 | 
						|
        encoder.clear_cache()
 | 
						|
 | 
						|
        mock_rmtree.assert_called_once_with(encoder.cache_dir)
 | 
						|
        info.assert_called_with(f"Cleared cache directory for model '{encoder.model_name}'.")
 | 
						|
 | 
						|
    def test_clear_cache_warns_if_path_does_not_exist(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
 | 
						|
        mock_rmtree.avoids_symlink_attacks = True
 | 
						|
        mock_cache_dir = mocker.Mock()
 | 
						|
        mock_cache_dir.exists.return_value = False
 | 
						|
        mock_cache_dir.is_dir.return_value = True
 | 
						|
        mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
 | 
						|
        warning = mocker.spy(log, "warning")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
 | 
						|
        encoder.clear_cache()
 | 
						|
 | 
						|
        mock_rmtree.assert_not_called()
 | 
						|
        warning.assert_called_once()
 | 
						|
 | 
						|
    def test_clear_cache_raises_exception_if_vulnerable_to_symlink_attack(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
 | 
						|
        mock_rmtree.avoids_symlink_attacks = False
 | 
						|
        mock_cache_dir = mocker.Mock()
 | 
						|
        mock_cache_dir.exists.return_value = True
 | 
						|
        mock_cache_dir.is_dir.return_value = True
 | 
						|
        mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
 | 
						|
        with pytest.raises(RuntimeError):
 | 
						|
            encoder.clear_cache()
 | 
						|
 | 
						|
        mock_rmtree.assert_not_called()
 | 
						|
 | 
						|
    def test_clear_cache_replaces_file_with_dir_if_path_is_file(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_rmtree = mocker.patch("app.models.base.rmtree", autospec=True)
 | 
						|
        mock_rmtree.avoids_symlink_attacks = True
 | 
						|
        mock_cache_dir = mocker.Mock()
 | 
						|
        mock_cache_dir.exists.return_value = True
 | 
						|
        mock_cache_dir.is_dir.return_value = False
 | 
						|
        mocker.patch("app.models.base.Path", return_value=mock_cache_dir)
 | 
						|
        warning = mocker.spy(log, "warning")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir=mock_cache_dir)
 | 
						|
        encoder.clear_cache()
 | 
						|
 | 
						|
        mock_rmtree.assert_not_called()
 | 
						|
        mock_cache_dir.unlink.assert_called_once()
 | 
						|
        mock_cache_dir.mkdir.assert_called_once()
 | 
						|
        warning.assert_called_once()
 | 
						|
 | 
						|
    def test_make_session_return_ann_if_available(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_model_path = mocker.Mock()
 | 
						|
        mock_model_path.is_file.return_value = True
 | 
						|
        mock_model_path.suffix = ".armnn"
 | 
						|
        mock_model_path.with_suffix.return_value = mock_model_path
 | 
						|
        mock_ann = mocker.patch("app.models.base.AnnSession")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
        encoder._make_session(mock_model_path)
 | 
						|
 | 
						|
        mock_ann.assert_called_once()
 | 
						|
 | 
						|
    def test_make_session_return_ort_if_available_and_ann_is_not(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_armnn_path = mocker.Mock()
 | 
						|
        mock_armnn_path.is_file.return_value = False
 | 
						|
        mock_armnn_path.suffix = ".armnn"
 | 
						|
 | 
						|
        mock_onnx_path = mocker.Mock()
 | 
						|
        mock_onnx_path.is_file.return_value = True
 | 
						|
        mock_onnx_path.suffix = ".onnx"
 | 
						|
        mock_armnn_path.with_suffix.return_value = mock_onnx_path
 | 
						|
 | 
						|
        mock_ann = mocker.patch("app.models.base.AnnSession")
 | 
						|
        mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
        encoder._make_session(mock_armnn_path)
 | 
						|
 | 
						|
        mock_ort.assert_called_once()
 | 
						|
        mock_ann.assert_not_called()
 | 
						|
 | 
						|
    def test_make_session_raises_exception_if_path_does_not_exist(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_model_path = mocker.Mock()
 | 
						|
        mock_model_path.is_file.return_value = False
 | 
						|
        mock_model_path.suffix = ".onnx"
 | 
						|
        mock_model_path.with_suffix.return_value = mock_model_path
 | 
						|
        mock_ann = mocker.patch("app.models.base.AnnSession")
 | 
						|
        mock_ort = mocker.patch("app.models.base.ort.InferenceSession")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai")
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            encoder._make_session(mock_model_path)
 | 
						|
 | 
						|
        mock_ann.assert_not_called()
 | 
						|
        mock_ort.assert_not_called()
 | 
						|
 | 
						|
    def test_download(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_snapshot_download = mocker.patch("app.models.base.snapshot_download")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="/path/to/cache")
 | 
						|
        encoder.download()
 | 
						|
 | 
						|
        mock_snapshot_download.assert_called_once_with(
 | 
						|
            "immich-app/ViT-B-32__openai",
 | 
						|
            cache_dir=encoder.cache_dir,
 | 
						|
            local_dir=encoder.cache_dir,
 | 
						|
            local_dir_use_symlinks=False,
 | 
						|
            ignore_patterns=["*.armnn"],
 | 
						|
        )
 | 
						|
 | 
						|
    def test_download_downloads_armnn_if_preferred_runtime(self, mocker: MockerFixture) -> None:
 | 
						|
        mock_snapshot_download = mocker.patch("app.models.base.snapshot_download")
 | 
						|
 | 
						|
        encoder = OpenCLIPEncoder("ViT-B-32__openai", preferred_runtime=ModelRuntime.ARMNN)
 | 
						|
        encoder.download()
 | 
						|
 | 
						|
        mock_snapshot_download.assert_called_once_with(
 | 
						|
            "immich-app/ViT-B-32__openai",
 | 
						|
            cache_dir=encoder.cache_dir,
 | 
						|
            local_dir=encoder.cache_dir,
 | 
						|
            local_dir_use_symlinks=False,
 | 
						|
            ignore_patterns=[],
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
class TestCLIP:
 | 
						|
    embedding = np.random.rand(512).astype(np.float32)
 | 
						|
    cache_dir = Path("test_cache")
 | 
						|
 | 
						|
    def test_basic_image(
 | 
						|
        self,
 | 
						|
        pil_image: Image.Image,
 | 
						|
        mocker: MockerFixture,
 | 
						|
        clip_model_cfg: dict[str, Any],
 | 
						|
        clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
        clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
    ) -> None:
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "download")
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
 | 
						|
 | 
						|
        mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
 | 
						|
        mocked.run.return_value = [[self.embedding]]
 | 
						|
        mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
 | 
						|
 | 
						|
        clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="vision")
 | 
						|
        embedding = clip_encoder.predict(pil_image)
 | 
						|
 | 
						|
        assert clip_encoder.mode == "vision"
 | 
						|
        assert isinstance(embedding, np.ndarray)
 | 
						|
        assert embedding.shape[0] == clip_model_cfg["embed_dim"]
 | 
						|
        assert embedding.dtype == np.float32
 | 
						|
        mocked.run.assert_called_once()
 | 
						|
 | 
						|
    def test_basic_text(
 | 
						|
        self,
 | 
						|
        mocker: MockerFixture,
 | 
						|
        clip_model_cfg: dict[str, Any],
 | 
						|
        clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
        clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
    ) -> None:
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "download")
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
 | 
						|
 | 
						|
        mocked = mocker.patch.object(InferenceModel, "_make_session", autospec=True).return_value
 | 
						|
        mocked.run.return_value = [[self.embedding]]
 | 
						|
        mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True)
 | 
						|
 | 
						|
        clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
 | 
						|
        embedding = clip_encoder.predict("test search query")
 | 
						|
 | 
						|
        assert clip_encoder.mode == "text"
 | 
						|
        assert isinstance(embedding, np.ndarray)
 | 
						|
        assert embedding.shape[0] == clip_model_cfg["embed_dim"]
 | 
						|
        assert embedding.dtype == np.float32
 | 
						|
        mocked.run.assert_called_once()
 | 
						|
 | 
						|
    def test_openclip_tokenizer(
 | 
						|
        self,
 | 
						|
        mocker: MockerFixture,
 | 
						|
        clip_model_cfg: dict[str, Any],
 | 
						|
        clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
        clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
    ) -> None:
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "download")
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
 | 
						|
        mock_tokenizer = mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True).return_value
 | 
						|
        mock_ids = [randint(0, 50000) for _ in range(77)]
 | 
						|
        mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids)
 | 
						|
 | 
						|
        clip_encoder = OpenCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
 | 
						|
        clip_encoder._load_tokenizer()
 | 
						|
        tokens = clip_encoder.tokenize("test search query")
 | 
						|
 | 
						|
        assert "text" in tokens
 | 
						|
        assert isinstance(tokens["text"], np.ndarray)
 | 
						|
        assert tokens["text"].shape == (1, 77)
 | 
						|
        assert tokens["text"].dtype == np.int32
 | 
						|
        assert np.allclose(tokens["text"], np.array([mock_ids], dtype=np.int32), atol=0)
 | 
						|
 | 
						|
    def test_mclip_tokenizer(
 | 
						|
        self,
 | 
						|
        mocker: MockerFixture,
 | 
						|
        clip_model_cfg: dict[str, Any],
 | 
						|
        clip_preprocess_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
        clip_tokenizer_cfg: Callable[[Path], dict[str, Any]],
 | 
						|
    ) -> None:
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "download")
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "model_cfg", clip_model_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "preprocess_cfg", clip_preprocess_cfg)
 | 
						|
        mocker.patch.object(OpenCLIPEncoder, "tokenizer_cfg", clip_tokenizer_cfg)
 | 
						|
        mock_tokenizer = mocker.patch("app.models.clip.Tokenizer.from_file", autospec=True).return_value
 | 
						|
        mock_ids = [randint(0, 50000) for _ in range(77)]
 | 
						|
        mock_attention_mask = [randint(0, 1) for _ in range(77)]
 | 
						|
        mock_tokenizer.encode.return_value = SimpleNamespace(ids=mock_ids, attention_mask=mock_attention_mask)
 | 
						|
 | 
						|
        clip_encoder = MCLIPEncoder("ViT-B-32__openai", cache_dir="test_cache", mode="text")
 | 
						|
        clip_encoder._load_tokenizer()
 | 
						|
        tokens = clip_encoder.tokenize("test search query")
 | 
						|
 | 
						|
        assert "input_ids" in tokens
 | 
						|
        assert "attention_mask" in tokens
 | 
						|
        assert isinstance(tokens["input_ids"], np.ndarray)
 | 
						|
        assert isinstance(tokens["attention_mask"], np.ndarray)
 | 
						|
        assert tokens["input_ids"].shape == (1, 77)
 | 
						|
        assert tokens["attention_mask"].shape == (1, 77)
 | 
						|
        assert np.allclose(tokens["input_ids"], np.array([mock_ids], dtype=np.int32), atol=0)
 | 
						|
        assert np.allclose(tokens["attention_mask"], np.array([mock_attention_mask], dtype=np.int32), atol=0)
 | 
						|
 | 
						|
 | 
						|
class TestFaceRecognition:
 | 
						|
    def test_set_min_score(self, mocker: MockerFixture) -> None:
 | 
						|
        mocker.patch.object(FaceRecognizer, "load")
 | 
						|
        face_recognizer = FaceRecognizer("buffalo_s", cache_dir="test_cache", min_score=0.5)
 | 
						|
 | 
						|
        assert face_recognizer.min_score == 0.5
 | 
						|
 | 
						|
    def test_basic(self, cv_image: cv2.Mat, mocker: MockerFixture) -> None:
 | 
						|
        mocker.patch.object(FaceRecognizer, "load")
 | 
						|
        face_recognizer = FaceRecognizer("buffalo_s", min_score=0.0, cache_dir="test_cache")
 | 
						|
 | 
						|
        det_model = mock.Mock()
 | 
						|
        num_faces = 2
 | 
						|
        bbox = np.random.rand(num_faces, 4).astype(np.float32)
 | 
						|
        score = np.array([[0.67]] * num_faces).astype(np.float32)
 | 
						|
        kpss = np.random.rand(num_faces, 5, 2).astype(np.float32)
 | 
						|
        det_model.detect.return_value = (np.concatenate([bbox, score], axis=-1), kpss)
 | 
						|
        face_recognizer.det_model = det_model
 | 
						|
 | 
						|
        rec_model = mock.Mock()
 | 
						|
        embedding = np.random.rand(num_faces, 512).astype(np.float32)
 | 
						|
        rec_model.get_feat.return_value = embedding
 | 
						|
        face_recognizer.rec_model = rec_model
 | 
						|
 | 
						|
        faces = face_recognizer.predict(cv_image)
 | 
						|
 | 
						|
        assert len(faces) == num_faces
 | 
						|
        for face in faces:
 | 
						|
            assert face["imageHeight"] == 800
 | 
						|
            assert face["imageWidth"] == 600
 | 
						|
            assert isinstance(face["embedding"], np.ndarray)
 | 
						|
            assert face["embedding"].shape[0] == 512
 | 
						|
            assert face["embedding"].dtype == np.float32
 | 
						|
 | 
						|
        det_model.detect.assert_called_once()
 | 
						|
        assert rec_model.get_feat.call_count == num_faces
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.asyncio
 | 
						|
class TestCache:
 | 
						|
    async def test_caches(self, mock_get_model: mock.Mock) -> None:
 | 
						|
        model_cache = ModelCache()
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION)
 | 
						|
        assert len(model_cache.cache._cache) == 1
 | 
						|
        mock_get_model.assert_called_once()
 | 
						|
 | 
						|
    async def test_kwargs_used(self, mock_get_model: mock.Mock) -> None:
 | 
						|
        model_cache = ModelCache()
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, cache_dir="test_cache")
 | 
						|
        mock_get_model.assert_called_once_with(ModelType.FACIAL_RECOGNITION, "test_model_name", cache_dir="test_cache")
 | 
						|
 | 
						|
    async def test_different_clip(self, mock_get_model: mock.Mock) -> None:
 | 
						|
        model_cache = ModelCache()
 | 
						|
        await model_cache.get("test_image_model_name", ModelType.CLIP)
 | 
						|
        await model_cache.get("test_text_model_name", ModelType.CLIP)
 | 
						|
        mock_get_model.assert_has_calls(
 | 
						|
            [
 | 
						|
                mock.call(ModelType.CLIP, "test_image_model_name"),
 | 
						|
                mock.call(ModelType.CLIP, "test_text_model_name"),
 | 
						|
            ]
 | 
						|
        )
 | 
						|
        assert len(model_cache.cache._cache) == 2
 | 
						|
 | 
						|
    @mock.patch("app.models.cache.OptimisticLock", autospec=True)
 | 
						|
    async def test_model_ttl(self, mock_lock_cls: mock.Mock, mock_get_model: mock.Mock) -> None:
 | 
						|
        model_cache = ModelCache()
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
 | 
						|
        mock_lock_cls.return_value.__aenter__.return_value.cas.assert_called_with(mock.ANY, ttl=100)
 | 
						|
 | 
						|
    @mock.patch("app.models.cache.SimpleMemoryCache.expire")
 | 
						|
    async def test_revalidate_get(self, mock_cache_expire: mock.Mock, mock_get_model: mock.Mock) -> None:
 | 
						|
        model_cache = ModelCache(revalidate=True)
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
 | 
						|
        mock_cache_expire.assert_called_once_with(mock.ANY, 100)
 | 
						|
 | 
						|
    async def test_profiling(self, mock_get_model: mock.Mock) -> None:
 | 
						|
        model_cache = ModelCache(profiling=True)
 | 
						|
        await model_cache.get("test_model_name", ModelType.FACIAL_RECOGNITION, ttl=100)
 | 
						|
        profiling = await model_cache.get_profiling()
 | 
						|
        assert isinstance(profiling, dict)
 | 
						|
        assert profiling == model_cache.cache.profiling
 | 
						|
 | 
						|
    async def test_loads_mclip(self) -> None:
 | 
						|
        model_cache = ModelCache()
 | 
						|
 | 
						|
        model = await model_cache.get("XLM-Roberta-Large-Vit-B-32", ModelType.CLIP, mode="text")
 | 
						|
 | 
						|
        assert isinstance(model, MCLIPEncoder)
 | 
						|
        assert model.model_name == "XLM-Roberta-Large-Vit-B-32"
 | 
						|
 | 
						|
    async def test_raises_exception_if_invalid_model_type(self) -> None:
 | 
						|
        invalid: Any = SimpleNamespace(value="invalid")
 | 
						|
        model_cache = ModelCache()
 | 
						|
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            await model_cache.get("XLM-Roberta-Large-Vit-B-32", invalid, mode="text")
 | 
						|
 | 
						|
    async def test_raises_exception_if_unknown_model_name(self) -> None:
 | 
						|
        model_cache = ModelCache()
 | 
						|
 | 
						|
        with pytest.raises(ValueError):
 | 
						|
            await model_cache.get("test_model_name", ModelType.CLIP, mode="text")
 | 
						|
 | 
						|
    async def test_preloads_models(self, monkeypatch: MonkeyPatch, mock_get_model: mock.Mock) -> None:
 | 
						|
        os.environ["MACHINE_LEARNING_PRELOAD__CLIP"] = "ViT-B-32__openai"
 | 
						|
        os.environ["MACHINE_LEARNING_PRELOAD__FACIAL_RECOGNITION"] = "buffalo_s"
 | 
						|
 | 
						|
        settings = Settings()
 | 
						|
        assert settings.preload is not None
 | 
						|
        assert settings.preload.clip == "ViT-B-32__openai"
 | 
						|
        assert settings.preload.facial_recognition == "buffalo_s"
 | 
						|
 | 
						|
        model_cache = ModelCache()
 | 
						|
        monkeypatch.setattr("app.main.model_cache", model_cache)
 | 
						|
 | 
						|
        await preload_models(settings.preload)
 | 
						|
        assert len(model_cache.cache._cache) == 2
 | 
						|
        assert mock_get_model.call_count == 2
 | 
						|
        await model_cache.get("ViT-B-32__openai", ModelType.CLIP, ttl=100)
 | 
						|
        await model_cache.get("buffalo_s", ModelType.FACIAL_RECOGNITION, ttl=100)
 | 
						|
        assert mock_get_model.call_count == 2
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.asyncio
 | 
						|
class TestLoad:
 | 
						|
    async def test_load(self) -> None:
 | 
						|
        mock_model = mock.Mock(spec=InferenceModel)
 | 
						|
        mock_model.loaded = False
 | 
						|
 | 
						|
        res = await load(mock_model)
 | 
						|
 | 
						|
        assert res is mock_model
 | 
						|
        mock_model.load.assert_called_once()
 | 
						|
        mock_model.clear_cache.assert_not_called()
 | 
						|
 | 
						|
    async def test_load_returns_model_if_loaded(self) -> None:
 | 
						|
        mock_model = mock.Mock(spec=InferenceModel)
 | 
						|
        mock_model.loaded = True
 | 
						|
 | 
						|
        res = await load(mock_model)
 | 
						|
 | 
						|
        assert res is mock_model
 | 
						|
        mock_model.load.assert_not_called()
 | 
						|
 | 
						|
    async def test_load_clears_cache_and_retries_if_os_error(self) -> None:
 | 
						|
        mock_model = mock.Mock(spec=InferenceModel)
 | 
						|
        mock_model.model_name = "test_model_name"
 | 
						|
        mock_model.model_type = ModelType.CLIP
 | 
						|
        mock_model.load.side_effect = [OSError, None]
 | 
						|
        mock_model.loaded = False
 | 
						|
 | 
						|
        res = await load(mock_model)
 | 
						|
 | 
						|
        assert res is mock_model
 | 
						|
        mock_model.clear_cache.assert_called_once()
 | 
						|
        assert mock_model.load.call_count == 2
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.skipif(
 | 
						|
    not settings.test_full,
 | 
						|
    reason="More time-consuming since it deploys the app and loads models.",
 | 
						|
)
 | 
						|
class TestEndpoints:
 | 
						|
    def test_clip_image_endpoint(
 | 
						|
        self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient
 | 
						|
    ) -> None:
 | 
						|
        byte_image = BytesIO()
 | 
						|
        pil_image.save(byte_image, format="jpeg")
 | 
						|
        expected = responses["clip"]["image"]
 | 
						|
 | 
						|
        response = deployed_app.post(
 | 
						|
            "http://localhost:3003/predict",
 | 
						|
            data={"modelName": "ViT-B-32__openai", "modelType": "clip", "options": json.dumps({"mode": "vision"})},
 | 
						|
            files={"image": byte_image.getvalue()},
 | 
						|
        )
 | 
						|
 | 
						|
        actual = response.json()
 | 
						|
        assert response.status_code == 200
 | 
						|
        assert np.allclose(expected, actual)
 | 
						|
 | 
						|
    def test_clip_text_endpoint(self, responses: dict[str, Any], deployed_app: TestClient) -> None:
 | 
						|
        expected = responses["clip"]["text"]
 | 
						|
 | 
						|
        response = deployed_app.post(
 | 
						|
            "http://localhost:3003/predict",
 | 
						|
            data={
 | 
						|
                "modelName": "ViT-B-32__openai",
 | 
						|
                "modelType": "clip",
 | 
						|
                "text": "test search query",
 | 
						|
                "options": json.dumps({"mode": "text"}),
 | 
						|
            },
 | 
						|
        )
 | 
						|
 | 
						|
        actual = response.json()
 | 
						|
        assert response.status_code == 200
 | 
						|
        assert np.allclose(expected, actual)
 | 
						|
 | 
						|
    def test_face_endpoint(self, pil_image: Image.Image, responses: dict[str, Any], deployed_app: TestClient) -> None:
 | 
						|
        byte_image = BytesIO()
 | 
						|
        pil_image.save(byte_image, format="jpeg")
 | 
						|
        expected = responses["facial-recognition"]
 | 
						|
 | 
						|
        response = deployed_app.post(
 | 
						|
            "http://localhost:3003/predict",
 | 
						|
            data={
 | 
						|
                "modelName": "buffalo_l",
 | 
						|
                "modelType": "facial-recognition",
 | 
						|
                "options": json.dumps({"minScore": 0.034}),
 | 
						|
            },
 | 
						|
            files={"image": byte_image.getvalue()},
 | 
						|
        )
 | 
						|
 | 
						|
        actual = response.json()
 | 
						|
        assert response.status_code == 200
 | 
						|
        assert len(expected) == len(actual)
 | 
						|
        for expected_face, actual_face in zip(expected, actual):
 | 
						|
            assert expected_face["imageHeight"] == actual_face["imageHeight"]
 | 
						|
            assert expected_face["imageWidth"] == actual_face["imageWidth"]
 | 
						|
            assert expected_face["boundingBox"] == actual_face["boundingBox"]
 | 
						|
            assert np.allclose(expected_face["embedding"], actual_face["embedding"])
 | 
						|
            assert np.allclose(expected_face["score"], actual_face["score"])
 |