mirror of
				https://github.com/immich-app/immich.git
				synced 2025-11-03 19:29:32 -05:00 
			
		
		
		
	* modularize model classes * various fixes * expose port * change response * round coordinates * simplify preload * update server * simplify interface simplify * update tests * composable endpoint * cleanup fixes remove unnecessary interface support text input, cleanup * ew camelcase * update server server fixes fix typing * ml fixes update locustfile fixes * cleaner response * better repo response * update tests formatting and typing rename * undo compose change * linting fix type actually fix typing * stricter typing fix detection-only response no need for defaultdict * update spec file update api linting * update e2e * unnecessary dimension * remove commented code * remove duplicate code * remove unused imports * add batch dim
		
			
				
	
	
		
			49 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from pathlib import Path
 | 
						|
from typing import Any
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from insightface.model_zoo import RetinaFace
 | 
						|
from numpy.typing import NDArray
 | 
						|
 | 
						|
from app.models.base import InferenceModel
 | 
						|
from app.models.transforms import decode_cv2
 | 
						|
from app.schemas import FaceDetectionOutput, ModelSession, ModelTask, ModelType
 | 
						|
 | 
						|
 | 
						|
class FaceDetector(InferenceModel):
 | 
						|
    depends = []
 | 
						|
    identity = (ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        model_name: str,
 | 
						|
        min_score: float = 0.7,
 | 
						|
        cache_dir: Path | str | None = None,
 | 
						|
        **model_kwargs: Any,
 | 
						|
    ) -> None:
 | 
						|
        self.min_score = model_kwargs.pop("minScore", min_score)
 | 
						|
        super().__init__(model_name, cache_dir, **model_kwargs)
 | 
						|
 | 
						|
    def _load(self) -> ModelSession:
 | 
						|
        session = self._make_session(self.model_path)
 | 
						|
        self.model = RetinaFace(session=session)
 | 
						|
        self.model.prepare(ctx_id=0, det_thresh=self.min_score, input_size=(640, 640))
 | 
						|
 | 
						|
        return session
 | 
						|
 | 
						|
    def _predict(self, inputs: NDArray[np.uint8] | bytes, **kwargs: Any) -> FaceDetectionOutput:
 | 
						|
        inputs = decode_cv2(inputs)
 | 
						|
 | 
						|
        bboxes, landmarks = self._detect(inputs)
 | 
						|
        return {
 | 
						|
            "boxes": bboxes[:, :4].round(),
 | 
						|
            "scores": bboxes[:, 4],
 | 
						|
            "landmarks": landmarks,
 | 
						|
        }
 | 
						|
 | 
						|
    def _detect(self, inputs: NDArray[np.uint8] | bytes) -> tuple[NDArray[np.float32], NDArray[np.float32]]:
 | 
						|
        return self.model.detect(inputs)  # type: ignore
 | 
						|
 | 
						|
    def configure(self, **kwargs: Any) -> None:
 | 
						|
        self.model.det_thresh = kwargs.pop("minScore", self.model.det_thresh)
 |