mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-30 18:35:00 -04:00 
			
		
		
		
	* chore(deps): update machine-learning * fix typing, use new lifespan syntax * wrap in try / finally * move log --------- Co-authored-by: renovate[bot] <29139614+renovate[bot]@users.noreply.github.com> Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
		
			
				
	
	
		
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| from pathlib import Path
 | |
| from typing import Any, NamedTuple
 | |
| 
 | |
| import numpy as np
 | |
| from numpy.typing import NDArray
 | |
| 
 | |
| from ann.ann import Ann
 | |
| 
 | |
| from ..config import log, settings
 | |
| 
 | |
| 
 | |
| class AnnSession:
 | |
|     """
 | |
|     Wrapper for ANN to be drop-in replacement for ONNX session.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, model_path: Path):
 | |
|         tuning_file = Path(settings.cache_folder) / "gpu-tuning.ann"
 | |
|         with tuning_file.open(mode="a"):
 | |
|             # make sure tuning file exists (without clearing contents)
 | |
|             # once filled, the tuning file reduces the cost/time of the first
 | |
|             # inference after model load by 10s of seconds
 | |
|             pass
 | |
|         self.ann = Ann(tuning_level=3, tuning_file=tuning_file.as_posix())
 | |
|         log.info("Loading ANN model %s ...", model_path)
 | |
|         cache_file = model_path.with_suffix(".anncache")
 | |
|         save = False
 | |
|         if not cache_file.is_file():
 | |
|             save = True
 | |
|             with cache_file.open(mode="a"):
 | |
|                 # create empty model cache file
 | |
|                 pass
 | |
| 
 | |
|         self.model = self.ann.load(
 | |
|             model_path.as_posix(),
 | |
|             save_cached_network=save,
 | |
|             cached_network_path=cache_file.as_posix(),
 | |
|         )
 | |
|         log.info("Loaded ANN model with ID %d", self.model)
 | |
| 
 | |
|     def __del__(self) -> None:
 | |
|         self.ann.unload(self.model)
 | |
|         log.info("Unloaded ANN model %d", self.model)
 | |
|         self.ann.destroy()
 | |
| 
 | |
|     def get_inputs(self) -> list[AnnNode]:
 | |
|         shapes = self.ann.input_shapes[self.model]
 | |
|         return [AnnNode(None, s) for s in shapes]
 | |
| 
 | |
|     def get_outputs(self) -> list[AnnNode]:
 | |
|         shapes = self.ann.output_shapes[self.model]
 | |
|         return [AnnNode(None, s) for s in shapes]
 | |
| 
 | |
|     def run(
 | |
|         self,
 | |
|         output_names: list[str] | None,
 | |
|         input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
 | |
|         run_options: Any = None,
 | |
|     ) -> list[NDArray[np.float32]]:
 | |
|         inputs: list[NDArray[np.float32]] = [np.ascontiguousarray(v) for v in input_feed.values()]
 | |
|         return self.ann.execute(self.model, inputs)
 | |
| 
 | |
| 
 | |
| class AnnNode(NamedTuple):
 | |
|     name: str | None
 | |
|     shape: tuple[int, ...]
 |