mirror of
				https://github.com/immich-app/immich.git
				synced 2025-10-30 18:35:00 -04:00 
			
		
		
		
	* convert to static * add comment about gross code * formatting * fixed test * fix typing * cleanup * formatting * Revert "formatting" This reverts commit 073965c47e7e31f1255fd461cd34ee19917d78bb. * Revert "cleanup" This reverts commit bb56bd3297303332b25bdc3b112cfc278ee593ba. * formatting
		
			
				
	
	
		
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import pickle
 | |
| from abc import ABC, abstractmethod
 | |
| from pathlib import Path
 | |
| from shutil import rmtree
 | |
| from typing import Any
 | |
| 
 | |
| import onnx
 | |
| import onnxruntime as ort
 | |
| from huggingface_hub import snapshot_download
 | |
| from onnx.shape_inference import infer_shapes
 | |
| from onnx.tools.update_model_dims import update_inputs_outputs_dims
 | |
| from typing_extensions import Buffer
 | |
| 
 | |
| import ann.ann
 | |
| from app.models.constants import STATIC_INPUT_PROVIDERS, SUPPORTED_PROVIDERS
 | |
| 
 | |
| from ..config import get_cache_dir, get_hf_model_name, log, settings
 | |
| from ..schemas import ModelRuntime, ModelType
 | |
| from .ann import AnnSession
 | |
| 
 | |
| 
 | |
| class InferenceModel(ABC):
 | |
|     _model_type: ModelType
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         model_name: str,
 | |
|         cache_dir: Path | str | None = None,
 | |
|         providers: list[str] | None = None,
 | |
|         provider_options: list[dict[str, Any]] | None = None,
 | |
|         sess_options: ort.SessionOptions | None = None,
 | |
|         preferred_runtime: ModelRuntime | None = None,
 | |
|         **model_kwargs: Any,
 | |
|     ) -> None:
 | |
|         self.loaded = False
 | |
|         self.model_name = model_name
 | |
|         self.cache_dir = Path(cache_dir) if cache_dir is not None else self.cache_dir_default
 | |
|         self.providers = providers if providers is not None else self.providers_default
 | |
|         self.provider_options = provider_options if provider_options is not None else self.provider_options_default
 | |
|         self.sess_options = sess_options if sess_options is not None else self.sess_options_default
 | |
|         self.preferred_runtime = preferred_runtime if preferred_runtime is not None else self.preferred_runtime_default
 | |
| 
 | |
|     def download(self) -> None:
 | |
|         if not self.cached:
 | |
|             log.info(
 | |
|                 f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'. This may take a while."
 | |
|             )
 | |
|             self._download()
 | |
| 
 | |
|     def load(self) -> None:
 | |
|         if self.loaded:
 | |
|             return
 | |
|         self.download()
 | |
|         log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}' to memory")
 | |
|         self._load()
 | |
|         self.loaded = True
 | |
| 
 | |
|     def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
 | |
|         self.load()
 | |
|         if model_kwargs:
 | |
|             self.configure(**model_kwargs)
 | |
|         return self._predict(inputs)
 | |
| 
 | |
|     @abstractmethod
 | |
|     def _predict(self, inputs: Any) -> Any:
 | |
|         ...
 | |
| 
 | |
|     def configure(self, **model_kwargs: Any) -> None:
 | |
|         pass
 | |
| 
 | |
|     def _download(self) -> None:
 | |
|         ignore_patterns = [] if self.preferred_runtime == ModelRuntime.ARMNN else ["*.armnn"]
 | |
|         snapshot_download(
 | |
|             get_hf_model_name(self.model_name),
 | |
|             cache_dir=self.cache_dir,
 | |
|             local_dir=self.cache_dir,
 | |
|             local_dir_use_symlinks=False,
 | |
|             ignore_patterns=ignore_patterns,
 | |
|         )
 | |
| 
 | |
|     @abstractmethod
 | |
|     def _load(self) -> None:
 | |
|         ...
 | |
| 
 | |
|     def clear_cache(self) -> None:
 | |
|         if not self.cache_dir.exists():
 | |
|             log.warning(
 | |
|                 f"Attempted to clear cache for model '{self.model_name}', but cache directory does not exist",
 | |
|             )
 | |
|             return
 | |
|         if not rmtree.avoids_symlink_attacks:
 | |
|             raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform")
 | |
| 
 | |
|         if self.cache_dir.is_dir():
 | |
|             log.info(f"Cleared cache directory for model '{self.model_name}'.")
 | |
|             rmtree(self.cache_dir)
 | |
|         else:
 | |
|             log.warning(
 | |
|                 (
 | |
|                     f"Encountered file instead of directory at cache path "
 | |
|                     f"for '{self.model_name}'. Removing file and replacing with a directory."
 | |
|                 ),
 | |
|             )
 | |
|             self.cache_dir.unlink()
 | |
|         self.cache_dir.mkdir(parents=True, exist_ok=True)
 | |
| 
 | |
|     def _make_session(self, model_path: Path) -> AnnSession | ort.InferenceSession:
 | |
|         if not model_path.is_file():
 | |
|             onnx_path = model_path.with_suffix(".onnx")
 | |
|             if not onnx_path.is_file():
 | |
|                 raise ValueError(f"Model path '{model_path}' does not exist")
 | |
| 
 | |
|             log.warning(
 | |
|                 f"Could not find model path '{model_path}'. " f"Falling back to ONNX model path '{onnx_path}' instead.",
 | |
|             )
 | |
|             model_path = onnx_path
 | |
| 
 | |
|         if any(provider in STATIC_INPUT_PROVIDERS for provider in self.providers):
 | |
|             static_path = model_path.parent / "static_1" / "model.onnx"
 | |
|             static_path.parent.mkdir(parents=True, exist_ok=True)
 | |
|             if not static_path.is_file():
 | |
|                 self._convert_to_static(model_path, static_path)
 | |
|             model_path = static_path
 | |
| 
 | |
|         match model_path.suffix:
 | |
|             case ".armnn":
 | |
|                 session = AnnSession(model_path)
 | |
|             case ".onnx":
 | |
|                 session = ort.InferenceSession(
 | |
|                     model_path.as_posix(),
 | |
|                     sess_options=self.sess_options,
 | |
|                     providers=self.providers,
 | |
|                     provider_options=self.provider_options,
 | |
|                 )
 | |
|             case _:
 | |
|                 raise ValueError(f"Unsupported model file type: {model_path.suffix}")
 | |
|         return session
 | |
| 
 | |
|     def _convert_to_static(self, source_path: Path, target_path: Path) -> None:
 | |
|         inferred = infer_shapes(onnx.load(source_path))
 | |
|         inputs = self._get_static_dims(inferred.graph.input)
 | |
|         outputs = self._get_static_dims(inferred.graph.output)
 | |
| 
 | |
|         # check_model gets called in update_inputs_outputs_dims and doesn't work for large models
 | |
|         check_model = onnx.checker.check_model
 | |
|         try:
 | |
| 
 | |
|             def check_model_stub(*args: Any, **kwargs: Any) -> None:
 | |
|                 pass
 | |
| 
 | |
|             onnx.checker.check_model = check_model_stub
 | |
|             updated_model = update_inputs_outputs_dims(inferred, inputs, outputs)
 | |
|         finally:
 | |
|             onnx.checker.check_model = check_model
 | |
| 
 | |
|         onnx.save(
 | |
|             updated_model,
 | |
|             target_path,
 | |
|             save_as_external_data=True,
 | |
|             all_tensors_to_one_file=False,
 | |
|             size_threshold=1048576,
 | |
|         )
 | |
| 
 | |
|     def _get_static_dims(self, graph_io: Any, dim_size: int = 1) -> dict[str, list[int]]:
 | |
|         return {
 | |
|             field.name: [
 | |
|                 d.dim_value if d.HasField("dim_value") else dim_size
 | |
|                 for shape in field.type.ListFields()
 | |
|                 if (dim := shape[1].shape.dim)
 | |
|                 for d in dim
 | |
|             ]
 | |
|             for field in graph_io
 | |
|         }
 | |
| 
 | |
|     @property
 | |
|     def model_type(self) -> ModelType:
 | |
|         return self._model_type
 | |
| 
 | |
|     @property
 | |
|     def cache_dir(self) -> Path:
 | |
|         return self._cache_dir
 | |
| 
 | |
|     @cache_dir.setter
 | |
|     def cache_dir(self, cache_dir: Path) -> None:
 | |
|         self._cache_dir = cache_dir
 | |
| 
 | |
|     @property
 | |
|     def cache_dir_default(self) -> Path:
 | |
|         return get_cache_dir(self.model_name, self.model_type)
 | |
| 
 | |
|     @property
 | |
|     def cached(self) -> bool:
 | |
|         return self.cache_dir.is_dir() and any(self.cache_dir.iterdir())
 | |
| 
 | |
|     @property
 | |
|     def providers(self) -> list[str]:
 | |
|         return self._providers
 | |
| 
 | |
|     @providers.setter
 | |
|     def providers(self, providers: list[str]) -> None:
 | |
|         log.debug(
 | |
|             (f"Setting '{self.model_name}' execution providers to {providers}, " "in descending order of preference"),
 | |
|         )
 | |
|         self._providers = providers
 | |
| 
 | |
|     @property
 | |
|     def providers_default(self) -> list[str]:
 | |
|         available_providers = set(ort.get_available_providers())
 | |
|         log.debug(f"Available ORT providers: {available_providers}")
 | |
|         return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
 | |
| 
 | |
|     @property
 | |
|     def provider_options(self) -> list[dict[str, Any]]:
 | |
|         return self._provider_options
 | |
| 
 | |
|     @provider_options.setter
 | |
|     def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
 | |
|         log.debug(f"Setting execution provider options to {provider_options}")
 | |
|         self._provider_options = provider_options
 | |
| 
 | |
|     @property
 | |
|     def provider_options_default(self) -> list[dict[str, Any]]:
 | |
|         options = []
 | |
|         for provider in self.providers:
 | |
|             match provider:
 | |
|                 case "CPUExecutionProvider" | "CUDAExecutionProvider":
 | |
|                     option = {"arena_extend_strategy": "kSameAsRequested"}
 | |
|                 case "OpenVINOExecutionProvider":
 | |
|                     try:
 | |
|                         device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
 | |
|                         log.debug(f"Available OpenVINO devices: {device_ids}")
 | |
|                         gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
 | |
|                         option = {"device_id": gpu_devices[0]} if gpu_devices else {}
 | |
|                     except AttributeError as e:
 | |
|                         log.warning("Failed to get OpenVINO device IDs. Using default options.")
 | |
|                         log.error(e)
 | |
|                         option = {}
 | |
|                 case _:
 | |
|                     option = {}
 | |
|             options.append(option)
 | |
|         return options
 | |
| 
 | |
|     @property
 | |
|     def sess_options(self) -> ort.SessionOptions:
 | |
|         return self._sess_options
 | |
| 
 | |
|     @sess_options.setter
 | |
|     def sess_options(self, sess_options: ort.SessionOptions) -> None:
 | |
|         log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
 | |
|         log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
 | |
|         log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
 | |
|         self._sess_options = sess_options
 | |
| 
 | |
|     @property
 | |
|     def sess_options_default(self) -> ort.SessionOptions:
 | |
|         sess_options = PicklableSessionOptions()
 | |
|         sess_options.enable_cpu_mem_arena = False
 | |
| 
 | |
|         # avoid thread contention between models
 | |
|         if settings.model_inter_op_threads > 0:
 | |
|             sess_options.inter_op_num_threads = settings.model_inter_op_threads
 | |
|         # these defaults work well for CPU, but bottleneck GPU
 | |
|         elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
 | |
|             sess_options.inter_op_num_threads = 1
 | |
| 
 | |
|         if settings.model_intra_op_threads > 0:
 | |
|             sess_options.intra_op_num_threads = settings.model_intra_op_threads
 | |
|         elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
 | |
|             sess_options.intra_op_num_threads = 2
 | |
| 
 | |
|         if sess_options.inter_op_num_threads > 1:
 | |
|             sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
 | |
| 
 | |
|         return sess_options
 | |
| 
 | |
|     @property
 | |
|     def preferred_runtime(self) -> ModelRuntime:
 | |
|         return self._preferred_runtime
 | |
| 
 | |
|     @preferred_runtime.setter
 | |
|     def preferred_runtime(self, preferred_runtime: ModelRuntime) -> None:
 | |
|         log.debug(f"Setting preferred runtime to {preferred_runtime}")
 | |
|         self._preferred_runtime = preferred_runtime
 | |
| 
 | |
|     @property
 | |
|     def preferred_runtime_default(self) -> ModelRuntime:
 | |
|         return ModelRuntime.ARMNN if ann.ann.is_available and settings.ann else ModelRuntime.ONNX
 | |
| 
 | |
| 
 | |
| # HF deep copies configs, so we need to make session options picklable
 | |
| class PicklableSessionOptions(ort.SessionOptions):  # type: ignore[misc]
 | |
|     def __getstate__(self) -> bytes:
 | |
|         return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
 | |
| 
 | |
|     def __setstate__(self, state: Buffer) -> None:
 | |
|         self.__init__()  # type: ignore[misc]
 | |
|         attrs: list[tuple[str, Any]] = pickle.loads(state)
 | |
|         for attr, val in attrs:
 | |
|             setattr(self, attr, val)
 |